MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  emcllem7 Structured version   Visualization version   GIF version

Theorem emcllem7 25573
Description: Lemma for emcl 25574 and harmonicbnd 25575. Derive bounds on γ as 𝐹(1) and 𝐺(1). (Contributed by Mario Carneiro, 11-Jul-2014.) (Revised by Mario Carneiro, 9-Apr-2016.)
Hypotheses
Ref Expression
emcl.1 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
emcl.2 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
emcl.3 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
emcl.4 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
Assertion
Ref Expression
emcllem7 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Distinct variable groups:   𝑚,𝐻   𝑚,𝑛,𝑇
Allowed substitution hints:   𝐹(𝑚,𝑛)   𝐺(𝑚,𝑛)   𝐻(𝑛)

Proof of Theorem emcllem7
Dummy variables 𝑖 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12275 . . . . 5 ℕ = (ℤ‘1)
2 1zzd 12007 . . . . 5 (⊤ → 1 ∈ ℤ)
3 emcl.1 . . . . . . . 8 𝐹 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)))
4 emcl.2 . . . . . . . 8 𝐺 = (𝑛 ∈ ℕ ↦ (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))))
5 emcl.3 . . . . . . . 8 𝐻 = (𝑛 ∈ ℕ ↦ (log‘(1 + (1 / 𝑛))))
6 emcl.4 . . . . . . . 8 𝑇 = (𝑛 ∈ ℕ ↦ ((1 / 𝑛) − (log‘(1 + (1 / 𝑛)))))
73, 4, 5, 6emcllem6 25572 . . . . . . 7 (𝐹 ⇝ γ ∧ 𝐺 ⇝ γ)
87simpri 488 . . . . . 6 𝐺 ⇝ γ
98a1i 11 . . . . 5 (⊤ → 𝐺 ⇝ γ)
103, 4emcllem1 25567 . . . . . . . 8 (𝐹:ℕ⟶ℝ ∧ 𝐺:ℕ⟶ℝ)
1110simpri 488 . . . . . . 7 𝐺:ℕ⟶ℝ
1211ffvelrni 6845 . . . . . 6 (𝑘 ∈ ℕ → (𝐺𝑘) ∈ ℝ)
1312adantl 484 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
141, 2, 9, 13climrecl 14934 . . . 4 (⊤ → γ ∈ ℝ)
15 1nn 11643 . . . . 5 1 ∈ ℕ
16 simpr 487 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
178a1i 11 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝐺 ⇝ γ)
1812adantl 484 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ℝ)
193, 4emcllem2 25568 . . . . . . . . 9 (𝑘 ∈ ℕ → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ∧ (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1))))
2019simprd 498 . . . . . . . 8 (𝑘 ∈ ℕ → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
2120adantl 484 . . . . . . 7 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
221, 16, 17, 18, 21climub 15012 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ≤ γ)
2322ralrimiva 3182 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ)
24 fveq2 6665 . . . . . . . 8 (𝑖 = 1 → (𝐺𝑖) = (𝐺‘1))
25 oveq2 7158 . . . . . . . . . . . . 13 (𝑛 = 1 → (1...𝑛) = (1...1))
2625sumeq1d 15052 . . . . . . . . . . . 12 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = Σ𝑚 ∈ (1...1)(1 / 𝑚))
27 1z 12006 . . . . . . . . . . . . 13 1 ∈ ℤ
28 ax-1cn 10589 . . . . . . . . . . . . 13 1 ∈ ℂ
29 oveq2 7158 . . . . . . . . . . . . . . 15 (𝑚 = 1 → (1 / 𝑚) = (1 / 1))
30 1div1e1 11324 . . . . . . . . . . . . . . 15 (1 / 1) = 1
3129, 30syl6eq 2872 . . . . . . . . . . . . . 14 (𝑚 = 1 → (1 / 𝑚) = 1)
3231fsum1 15096 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1)
3327, 28, 32mp2an 690 . . . . . . . . . . . 12 Σ𝑚 ∈ (1...1)(1 / 𝑚) = 1
3426, 33syl6eq 2872 . . . . . . . . . . 11 (𝑛 = 1 → Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) = 1)
35 oveq1 7157 . . . . . . . . . . . . 13 (𝑛 = 1 → (𝑛 + 1) = (1 + 1))
36 df-2 11694 . . . . . . . . . . . . 13 2 = (1 + 1)
3735, 36syl6eqr 2874 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑛 + 1) = 2)
3837fveq2d 6669 . . . . . . . . . . 11 (𝑛 = 1 → (log‘(𝑛 + 1)) = (log‘2))
3934, 38oveq12d 7168 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘(𝑛 + 1))) = (1 − (log‘2)))
40 1re 10635 . . . . . . . . . . . 12 1 ∈ ℝ
41 2rp 12388 . . . . . . . . . . . . 13 2 ∈ ℝ+
42 relogcl 25153 . . . . . . . . . . . . 13 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
4341, 42ax-mp 5 . . . . . . . . . . . 12 (log‘2) ∈ ℝ
4440, 43resubcli 10942 . . . . . . . . . . 11 (1 − (log‘2)) ∈ ℝ
4544elexi 3514 . . . . . . . . . 10 (1 − (log‘2)) ∈ V
4639, 4, 45fvmpt 6763 . . . . . . . . 9 (1 ∈ ℕ → (𝐺‘1) = (1 − (log‘2)))
4715, 46ax-mp 5 . . . . . . . 8 (𝐺‘1) = (1 − (log‘2))
4824, 47syl6eq 2872 . . . . . . 7 (𝑖 = 1 → (𝐺𝑖) = (1 − (log‘2)))
4948breq1d 5069 . . . . . 6 (𝑖 = 1 → ((𝐺𝑖) ≤ γ ↔ (1 − (log‘2)) ≤ γ))
5049rspcva 3621 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ≤ γ) → (1 − (log‘2)) ≤ γ)
5115, 23, 50sylancr 589 . . . 4 (⊤ → (1 − (log‘2)) ≤ γ)
52 fveq2 6665 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (𝐹𝑥) = (𝐹𝑖))
5352negeqd 10874 . . . . . . . . . . 11 (𝑥 = 𝑖 → -(𝐹𝑥) = -(𝐹𝑖))
54 eqid 2821 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) = (𝑥 ∈ ℕ ↦ -(𝐹𝑥))
55 negex 10878 . . . . . . . . . . 11 -(𝐹𝑖) ∈ V
5653, 54, 55fvmpt 6763 . . . . . . . . . 10 (𝑖 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
5756adantl 484 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) = -(𝐹𝑖))
587simpli 486 . . . . . . . . . . . . 13 𝐹 ⇝ γ
5958a1i 11 . . . . . . . . . . . 12 (⊤ → 𝐹 ⇝ γ)
60 0cnd 10628 . . . . . . . . . . . 12 (⊤ → 0 ∈ ℂ)
61 nnex 11638 . . . . . . . . . . . . . 14 ℕ ∈ V
6261mptex 6980 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V
6362a1i 11 . . . . . . . . . . . 12 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ∈ V)
6410simpli 486 . . . . . . . . . . . . . . 15 𝐹:ℕ⟶ℝ
6564ffvelrni 6845 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹𝑘) ∈ ℝ)
6665adantl 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℝ)
6766recnd 10663 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
68 fveq2 6665 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑘 → (𝐹𝑥) = (𝐹𝑘))
6968negeqd 10874 . . . . . . . . . . . . . . 15 (𝑥 = 𝑘 → -(𝐹𝑥) = -(𝐹𝑘))
70 negex 10878 . . . . . . . . . . . . . . 15 -(𝐹𝑘) ∈ V
7169, 54, 70fvmpt 6763 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
7271adantl 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = -(𝐹𝑘))
73 df-neg 10867 . . . . . . . . . . . . 13 -(𝐹𝑘) = (0 − (𝐹𝑘))
7472, 73syl6eq 2872 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) = (0 − (𝐹𝑘)))
751, 2, 59, 60, 63, 67, 74climsubc2 14989 . . . . . . . . . . 11 (⊤ → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7675adantr 483 . . . . . . . . . 10 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝑥 ∈ ℕ ↦ -(𝐹𝑥)) ⇝ (0 − γ))
7766renegcld 11061 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ∈ ℝ)
7872, 77eqeltrd 2913 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
7978adantlr 713 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ∈ ℝ)
8019simpld 497 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
8180adantl 484 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
82 peano2nn 11644 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
8382adantl 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
8464ffvelrni 6845 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8583, 84syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
8685, 66lenegd 11213 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘) ↔ -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1))))
8781, 86mpbid 234 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → -(𝐹𝑘) ≤ -(𝐹‘(𝑘 + 1)))
88 fveq2 6665 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 + 1) → (𝐹𝑥) = (𝐹‘(𝑘 + 1)))
8988negeqd 10874 . . . . . . . . . . . . . 14 (𝑥 = (𝑘 + 1) → -(𝐹𝑥) = -(𝐹‘(𝑘 + 1)))
90 negex 10878 . . . . . . . . . . . . . 14 -(𝐹‘(𝑘 + 1)) ∈ V
9189, 54, 90fvmpt 6763 . . . . . . . . . . . . 13 ((𝑘 + 1) ∈ ℕ → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9283, 91syl 17 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)) = -(𝐹‘(𝑘 + 1)))
9387, 72, 923brtr4d 5091 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
9493adantlr 713 . . . . . . . . . 10 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑘) ≤ ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘(𝑘 + 1)))
951, 16, 76, 79, 94climub 15012 . . . . . . . . 9 ((⊤ ∧ 𝑖 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ -(𝐹𝑥))‘𝑖) ≤ (0 − γ))
9657, 95eqbrtrrd 5083 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ (0 − γ))
97 df-neg 10867 . . . . . . . 8 -γ = (0 − γ)
9896, 97breqtrrdi 5101 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → -(𝐹𝑖) ≤ -γ)
9914mptru 1540 . . . . . . . 8 γ ∈ ℝ
10064ffvelrni 6845 . . . . . . . . 9 (𝑖 ∈ ℕ → (𝐹𝑖) ∈ ℝ)
101100adantl 484 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
102 leneg 11137 . . . . . . . 8 ((γ ∈ ℝ ∧ (𝐹𝑖) ∈ ℝ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10399, 101, 102sylancr 589 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (γ ≤ (𝐹𝑖) ↔ -(𝐹𝑖) ≤ -γ))
10498, 103mpbird 259 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → γ ≤ (𝐹𝑖))
105104ralrimiva 3182 . . . . 5 (⊤ → ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖))
106 fveq2 6665 . . . . . . . 8 (𝑖 = 1 → (𝐹𝑖) = (𝐹‘1))
107 fveq2 6665 . . . . . . . . . . . . 13 (𝑛 = 1 → (log‘𝑛) = (log‘1))
108 log1 25163 . . . . . . . . . . . . 13 (log‘1) = 0
109107, 108syl6eq 2872 . . . . . . . . . . . 12 (𝑛 = 1 → (log‘𝑛) = 0)
11034, 109oveq12d 7168 . . . . . . . . . . 11 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = (1 − 0))
111 1m0e1 11752 . . . . . . . . . . 11 (1 − 0) = 1
112110, 111syl6eq 2872 . . . . . . . . . 10 (𝑛 = 1 → (Σ𝑚 ∈ (1...𝑛)(1 / 𝑚) − (log‘𝑛)) = 1)
11340elexi 3514 . . . . . . . . . 10 1 ∈ V
114112, 3, 113fvmpt 6763 . . . . . . . . 9 (1 ∈ ℕ → (𝐹‘1) = 1)
11515, 114ax-mp 5 . . . . . . . 8 (𝐹‘1) = 1
116106, 115syl6eq 2872 . . . . . . 7 (𝑖 = 1 → (𝐹𝑖) = 1)
117116breq2d 5071 . . . . . 6 (𝑖 = 1 → (γ ≤ (𝐹𝑖) ↔ γ ≤ 1))
118117rspcva 3621 . . . . 5 ((1 ∈ ℕ ∧ ∀𝑖 ∈ ℕ γ ≤ (𝐹𝑖)) → γ ≤ 1)
11915, 105, 118sylancr 589 . . . 4 (⊤ → γ ≤ 1)
12044, 40elicc2i 12796 . . . 4 (γ ∈ ((1 − (log‘2))[,]1) ↔ (γ ∈ ℝ ∧ (1 − (log‘2)) ≤ γ ∧ γ ≤ 1))
12114, 51, 119, 120syl3anbrc 1339 . . 3 (⊤ → γ ∈ ((1 − (log‘2))[,]1))
122 ffn 6509 . . . . 5 (𝐹:ℕ⟶ℝ → 𝐹 Fn ℕ)
12364, 122mp1i 13 . . . 4 (⊤ → 𝐹 Fn ℕ)
12416, 1eleqtrdi 2923 . . . . . . . 8 ((⊤ ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘1))
125 elfznn 12930 . . . . . . . . . 10 (𝑘 ∈ (1...𝑖) → 𝑘 ∈ ℕ)
126125adantl 484 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → 𝑘 ∈ ℕ)
127126, 65syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐹𝑘) ∈ ℝ)
128 elfznn 12930 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑖 − 1)) → 𝑘 ∈ ℕ)
129128adantl 484 . . . . . . . . 9 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → 𝑘 ∈ ℕ)
130129, 80syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
131124, 127, 130monoord2 13395 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ (𝐹‘1))
132131, 115breqtrdi 5100 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ≤ 1)
13399, 40elicc2i 12796 . . . . . 6 ((𝐹𝑖) ∈ (γ[,]1) ↔ ((𝐹𝑖) ∈ ℝ ∧ γ ≤ (𝐹𝑖) ∧ (𝐹𝑖) ≤ 1))
134101, 104, 132, 133syl3anbrc 1339 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐹𝑖) ∈ (γ[,]1))
135134ralrimiva 3182 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1))
136 ffnfv 6877 . . . 4 (𝐹:ℕ⟶(γ[,]1) ↔ (𝐹 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐹𝑖) ∈ (γ[,]1)))
137123, 135, 136sylanbrc 585 . . 3 (⊤ → 𝐹:ℕ⟶(γ[,]1))
138 ffn 6509 . . . . 5 (𝐺:ℕ⟶ℝ → 𝐺 Fn ℕ)
13911, 138mp1i 13 . . . 4 (⊤ → 𝐺 Fn ℕ)
14011ffvelrni 6845 . . . . . . 7 (𝑖 ∈ ℕ → (𝐺𝑖) ∈ ℝ)
141140adantl 484 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ℝ)
142126, 12syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑖)) → (𝐺𝑘) ∈ ℝ)
143129, 20syl 17 . . . . . . . 8 (((⊤ ∧ 𝑖 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑖 − 1))) → (𝐺𝑘) ≤ (𝐺‘(𝑘 + 1)))
144124, 142, 143monoord 13394 . . . . . . 7 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺‘1) ≤ (𝐺𝑖))
14547, 144eqbrtrrid 5095 . . . . . 6 ((⊤ ∧ 𝑖 ∈ ℕ) → (1 − (log‘2)) ≤ (𝐺𝑖))
14644, 99elicc2i 12796 . . . . . 6 ((𝐺𝑖) ∈ ((1 − (log‘2))[,]γ) ↔ ((𝐺𝑖) ∈ ℝ ∧ (1 − (log‘2)) ≤ (𝐺𝑖) ∧ (𝐺𝑖) ≤ γ))
147141, 145, 22, 146syl3anbrc 1339 . . . . 5 ((⊤ ∧ 𝑖 ∈ ℕ) → (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
148147ralrimiva 3182 . . . 4 (⊤ → ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ))
149 ffnfv 6877 . . . 4 (𝐺:ℕ⟶((1 − (log‘2))[,]γ) ↔ (𝐺 Fn ℕ ∧ ∀𝑖 ∈ ℕ (𝐺𝑖) ∈ ((1 − (log‘2))[,]γ)))
150139, 148, 149sylanbrc 585 . . 3 (⊤ → 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
151121, 137, 1503jca 1124 . 2 (⊤ → (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ)))
152151mptru 1540 1 (γ ∈ ((1 − (log‘2))[,]1) ∧ 𝐹:ℕ⟶(γ[,]1) ∧ 𝐺:ℕ⟶((1 − (log‘2))[,]γ))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wral 3138  Vcvv 3495   class class class wbr 5059  cmpt 5139   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  cle 10670  cmin 10864  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  cz 11975  cuz 12237  +crp 12383  [,]cicc 12735  ...cfz 12886  cli 14835  Σcsu 15036  logclog 25132  γcem 25563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14420  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037  df-ef 15415  df-sin 15417  df-cos 15418  df-pi 15420  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-fbas 20536  df-fg 20537  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-lp 21738  df-perf 21739  df-cn 21829  df-cnp 21830  df-haus 21917  df-tx 22164  df-hmeo 22357  df-fil 22448  df-fm 22540  df-flim 22541  df-flf 22542  df-xms 22924  df-ms 22925  df-tms 22926  df-cncf 23480  df-limc 24458  df-dv 24459  df-log 25134  df-em 25564
This theorem is referenced by:  emcl  25574  harmonicbnd  25575  harmonicbnd2  25576
  Copyright terms: Public domain W3C validator