MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1b Structured version   Visualization version   GIF version

Theorem en1b 8576
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
en1b (𝐴 ≈ 1o𝐴 = { 𝐴})

Proof of Theorem en1b
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 en1 8575 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
2 id 22 . . . . 5 (𝐴 = {𝑥} → 𝐴 = {𝑥})
3 unieq 4848 . . . . . . 7 (𝐴 = {𝑥} → 𝐴 = {𝑥})
4 vex 3497 . . . . . . . 8 𝑥 ∈ V
54unisn 4857 . . . . . . 7 {𝑥} = 𝑥
63, 5syl6eq 2872 . . . . . 6 (𝐴 = {𝑥} → 𝐴 = 𝑥)
76sneqd 4578 . . . . 5 (𝐴 = {𝑥} → { 𝐴} = {𝑥})
82, 7eqtr4d 2859 . . . 4 (𝐴 = {𝑥} → 𝐴 = { 𝐴})
98exlimiv 1927 . . 3 (∃𝑥 𝐴 = {𝑥} → 𝐴 = { 𝐴})
101, 9sylbi 219 . 2 (𝐴 ≈ 1o𝐴 = { 𝐴})
11 id 22 . . 3 (𝐴 = { 𝐴} → 𝐴 = { 𝐴})
12 snex 5331 . . . . . 6 { 𝐴} ∈ V
1311, 12eqeltrdi 2921 . . . . 5 (𝐴 = { 𝐴} → 𝐴 ∈ V)
1413uniexd 7467 . . . 4 (𝐴 = { 𝐴} → 𝐴 ∈ V)
15 ensn1g 8573 . . . 4 ( 𝐴 ∈ V → { 𝐴} ≈ 1o)
1614, 15syl 17 . . 3 (𝐴 = { 𝐴} → { 𝐴} ≈ 1o)
1711, 16eqbrtrd 5087 . 2 (𝐴 = { 𝐴} → 𝐴 ≈ 1o)
1810, 17impbii 211 1 (𝐴 ≈ 1o𝐴 = { 𝐴})
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1533  wex 1776  wcel 2110  Vcvv 3494  {csn 4566   cuni 4837   class class class wbr 5065  1oc1o 8094  cen 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-1o 8101  df-en 8509
This theorem is referenced by:  en1uniel  8580  sylow2alem2  18742  sylow2a  18743  frgpcyg  20719  ptcmplem3  22661  cnextfvval  22672  cnextcn  22674  minveclem4a  24032  isppw  25690  xrge0tsmsbi  30693
  Copyright terms: Public domain W3C validator