MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1eqsn Structured version   Visualization version   GIF version

Theorem en1eqsn 8736
Description: A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.)
Assertion
Ref Expression
en1eqsn ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})

Proof of Theorem en1eqsn
StepHypRef Expression
1 1onn 8254 . . . . . 6 1o ∈ ω
2 ssid 3986 . . . . . 6 1o ⊆ 1o
3 ssnnfi 8725 . . . . . 6 ((1o ∈ ω ∧ 1o ⊆ 1o) → 1o ∈ Fin)
41, 2, 3mp2an 688 . . . . 5 1o ∈ Fin
5 enfii 8723 . . . . 5 ((1o ∈ Fin ∧ 𝐵 ≈ 1o) → 𝐵 ∈ Fin)
64, 5mpan 686 . . . 4 (𝐵 ≈ 1o𝐵 ∈ Fin)
76adantl 482 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 ∈ Fin)
8 snssi 4733 . . . 4 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
98adantr 481 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ⊆ 𝐵)
10 ensn1g 8562 . . . 4 (𝐴𝐵 → {𝐴} ≈ 1o)
11 ensym 8546 . . . 4 (𝐵 ≈ 1o → 1o𝐵)
12 entr 8549 . . . 4 (({𝐴} ≈ 1o ∧ 1o𝐵) → {𝐴} ≈ 𝐵)
1310, 11, 12syl2an 595 . . 3 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} ≈ 𝐵)
14 fisseneq 8717 . . 3 ((𝐵 ∈ Fin ∧ {𝐴} ⊆ 𝐵 ∧ {𝐴} ≈ 𝐵) → {𝐴} = 𝐵)
157, 9, 13, 14syl3anc 1363 . 2 ((𝐴𝐵𝐵 ≈ 1o) → {𝐴} = 𝐵)
1615eqcomd 2824 1 ((𝐴𝐵𝐵 ≈ 1o) → 𝐵 = {𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wss 3933  {csn 4557   class class class wbr 5057  ωcom 7569  1oc1o 8084  cen 8494  Fincfn 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-1o 8091  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501
This theorem is referenced by:  en1eqsnbi  8737  1nsgtrivd  18264  gex1  18645  0cyg  18942  pgpfac1lem3a  19127  pgpfaclem3  19134  0ring  19971  en1top  21520  cnextfres1  22604  xrge0tsmseq  30621  sconnpi1  32383  rngoueqz  35099  isdmn3  35233
  Copyright terms: Public domain W3C validator