![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1uniel | Structured version Visualization version GIF version |
Description: A singleton contains its sole element. (Contributed by Stefan O'Rear, 16-Aug-2015.) |
Ref | Expression |
---|---|
en1uniel | ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relen 8122 | . . . 4 ⊢ Rel ≈ | |
2 | 1 | brrelexi 5311 | . . 3 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 ∈ V) |
3 | uniexg 7116 | . . 3 ⊢ (𝑆 ∈ V → ∪ 𝑆 ∈ V) | |
4 | snidg 4347 | . . 3 ⊢ (∪ 𝑆 ∈ V → ∪ 𝑆 ∈ {∪ 𝑆}) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ {∪ 𝑆}) |
6 | en1b 8185 | . . 3 ⊢ (𝑆 ≈ 1𝑜 ↔ 𝑆 = {∪ 𝑆}) | |
7 | 6 | biimpi 206 | . 2 ⊢ (𝑆 ≈ 1𝑜 → 𝑆 = {∪ 𝑆}) |
8 | 5, 7 | eleqtrrd 2838 | 1 ⊢ (𝑆 ≈ 1𝑜 → ∪ 𝑆 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1628 ∈ wcel 2135 Vcvv 3336 {csn 4317 ∪ cuni 4584 class class class wbr 4800 1𝑜c1o 7718 ≈ cen 8114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pr 5051 ax-un 7110 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-nul 4055 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4585 df-br 4801 df-opab 4861 df-id 5170 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-1o 7725 df-en 8118 |
This theorem is referenced by: en2eleq 9017 en2other2 9018 pmtrf 18071 pmtrmvd 18072 pmtrfinv 18077 frgpcyg 20120 |
Copyright terms: Public domain | W3C validator |