Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Visualization version   GIF version

Theorem en3lpVD 41056
Description: Virtual deduction proof of en3lp 9065. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lpVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 890 . . 3 (¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
2 df-ne 3014 . . . . 5 ({𝐴, 𝐵, 𝐶} ≠ ∅ ↔ ¬ {𝐴, 𝐵, 𝐶} = ∅)
32bicomi 225 . . . 4 (¬ {𝐴, 𝐵, 𝐶} = ∅ ↔ {𝐴, 𝐵, 𝐶} ≠ ∅)
43orbi1i 907 . . 3 ((¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) ↔ ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅))
51, 4mpbi 231 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
6 zfregs2 9163 . . . 4 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
7 en3lplem2VD 41055 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
87alrimiv 1919 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
9 df-ral 3140 . . . . . 6 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) ↔ ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
108, 9sylibr 235 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1110con3i 157 . . . 4 (¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
126, 11syl 17 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
13 idn1 40785 . . . . . . 7 (   {𝐴, 𝐵, 𝐶} = ∅   ▶   {𝐴, 𝐵, 𝐶} = ∅   )
14 noel 4293 . . . . . . 7 ¬ 𝐶 ∈ ∅
15 eleq2 2898 . . . . . . . . 9 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
1615notbid 319 . . . . . . . 8 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ ¬ 𝐶 ∈ ∅))
1716biimprd 249 . . . . . . 7 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1813, 14, 17e10 40905 . . . . . 6 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
19 tpid3g 4700 . . . . . . 7 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
2019con3i 157 . . . . . 6 𝐶 ∈ {𝐴, 𝐵, 𝐶} → ¬ 𝐶𝐴)
2118, 20e1a 40838 . . . . 5 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶𝐴   )
22 simp3 1130 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2322con3i 157 . . . . 5 𝐶𝐴 → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2421, 23e1a 40838 . . . 4 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2524in1 40782 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2612, 25jaoi 851 . 2 (({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
275, 26ax-mp 5 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841  w3a 1079  wal 1526   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  c0 4288  {ctp 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-reg 9044  ax-inf2 9092
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-vd1 40781  df-vd2 40789  df-vd3 40801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator