Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  en3lpVD Structured version   Visualization version   GIF version

Theorem en3lpVD 38906
Description: Virtual deduction proof of en3lp 8510. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en3lpVD ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)

Proof of Theorem en3lpVD
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pm2.1 433 . . 3 (¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
2 df-ne 2794 . . . . 5 ({𝐴, 𝐵, 𝐶} ≠ ∅ ↔ ¬ {𝐴, 𝐵, 𝐶} = ∅)
32bicomi 214 . . . 4 (¬ {𝐴, 𝐵, 𝐶} = ∅ ↔ {𝐴, 𝐵, 𝐶} ≠ ∅)
43orbi1i 542 . . 3 ((¬ {𝐴, 𝐵, 𝐶} = ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) ↔ ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅))
51, 4mpbi 220 . 2 ({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅)
6 zfregs2 8606 . . . 4 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
7 en3lplem2VD 38905 . . . . . . 7 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
87alrimiv 1854 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
9 df-ral 2916 . . . . . 6 (∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) ↔ ∀𝑥(𝑥 ∈ {𝐴, 𝐵, 𝐶} → ∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥)))
108, 9sylibr 224 . . . . 5 ((𝐴𝐵𝐵𝐶𝐶𝐴) → ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥))
1110con3i 150 . . . 4 (¬ ∀𝑥 ∈ {𝐴, 𝐵, 𝐶}∃𝑦(𝑦 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝑦𝑥) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
126, 11syl 17 . . 3 ({𝐴, 𝐵, 𝐶} ≠ ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
13 idn1 38616 . . . . . . 7 (   {𝐴, 𝐵, 𝐶} = ∅   ▶   {𝐴, 𝐵, 𝐶} = ∅   )
14 noel 3917 . . . . . . 7 ¬ 𝐶 ∈ ∅
15 eleq2 2689 . . . . . . . . 9 ({𝐴, 𝐵, 𝐶} = ∅ → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ 𝐶 ∈ ∅))
1615notbid 308 . . . . . . . 8 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ ¬ 𝐶 ∈ ∅))
1716biimprd 238 . . . . . . 7 ({𝐴, 𝐵, 𝐶} = ∅ → (¬ 𝐶 ∈ ∅ → ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1813, 14, 17e10 38745 . . . . . 6 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶 ∈ {𝐴, 𝐵, 𝐶}   )
19 tpid3g 4303 . . . . . . 7 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
2019con3i 150 . . . . . 6 𝐶 ∈ {𝐴, 𝐵, 𝐶} → ¬ 𝐶𝐴)
2118, 20e1a 38678 . . . . 5 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ 𝐶𝐴   )
22 simp3 1062 . . . . . 6 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2322con3i 150 . . . . 5 𝐶𝐴 → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2421, 23e1a 38678 . . . 4 (   {𝐴, 𝐵, 𝐶} = ∅   ▶    ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)   )
2524in1 38613 . . 3 ({𝐴, 𝐵, 𝐶} = ∅ → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
2612, 25jaoi 394 . 2 (({𝐴, 𝐵, 𝐶} ≠ ∅ ∨ {𝐴, 𝐵, 𝐶} = ∅) → ¬ (𝐴𝐵𝐵𝐶𝐶𝐴))
275, 26ax-mp 5 1 ¬ (𝐴𝐵𝐵𝐶𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037  wal 1480   = wceq 1482  wex 1703  wcel 1989  wne 2793  wral 2911  c0 3913  {ctp 4179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-reg 8494  ax-inf2 8535
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-om 7063  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-vd1 38612  df-vd2 38620  df-vd3 38632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator