MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  engch Structured version   Visualization version   GIF version

Theorem engch 10044
Description: The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
engch (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))

Proof of Theorem engch
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enfi 8728 . . 3 (𝐴𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
2 sdomen1 8655 . . . . . 6 (𝐴𝐵 → (𝐴𝑥𝐵𝑥))
3 pwen 8684 . . . . . . 7 (𝐴𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵)
4 sdomen2 8656 . . . . . . 7 (𝒫 𝐴 ≈ 𝒫 𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
53, 4syl 17 . . . . . 6 (𝐴𝐵 → (𝑥 ≺ 𝒫 𝐴𝑥 ≺ 𝒫 𝐵))
62, 5anbi12d 632 . . . . 5 (𝐴𝐵 → ((𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
76notbid 320 . . . 4 (𝐴𝐵 → (¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
87albidv 1917 . . 3 (𝐴𝐵 → (∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴) ↔ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵)))
91, 8orbi12d 915 . 2 (𝐴𝐵 → ((𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)) ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
10 relen 8508 . . . 4 Rel ≈
1110brrelex1i 5602 . . 3 (𝐴𝐵𝐴 ∈ V)
12 elgch 10038 . . 3 (𝐴 ∈ V → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1311, 12syl 17 . 2 (𝐴𝐵 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
1410brrelex2i 5603 . . 3 (𝐴𝐵𝐵 ∈ V)
15 elgch 10038 . . 3 (𝐵 ∈ V → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
1614, 15syl 17 . 2 (𝐴𝐵 → (𝐵 ∈ GCH ↔ (𝐵 ∈ Fin ∨ ∀𝑥 ¬ (𝐵𝑥𝑥 ≺ 𝒫 𝐵))))
179, 13, 163bitr4d 313 1 (𝐴𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1531  wcel 2110  Vcvv 3494  𝒫 cpw 4538   class class class wbr 5058  cen 8500  csdm 8502  Fincfn 8503  GCHcgch 10036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-1o 8096  df-2o 8097  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-gch 10037
This theorem is referenced by:  gch2  10091
  Copyright terms: Public domain W3C validator