MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enqer Structured version   Visualization version   GIF version

Theorem enqer 9502
Description: The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.)
Assertion
Ref Expression
enqer ~Q Er (N × N)

Proof of Theorem enqer
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enq 9492 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
2 mulcompi 9477 . 2 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
3 mulclpi 9474 . 2 ((𝑥N𝑦N) → (𝑥 ·N 𝑦) ∈ N)
4 mulasspi 9478 . 2 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
5 mulcanpi 9481 . . 3 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) ↔ 𝑦 = 𝑧))
65biimpd 217 . 2 ((𝑥N𝑦N) → ((𝑥 ·N 𝑦) = (𝑥 ·N 𝑧) → 𝑦 = 𝑧))
71, 2, 3, 4, 6ecopover 7618 1 ~Q Er (N × N)
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1474  wcel 1938   × cxp 4930  (class class class)co 6431   Er wer 7506  Ncnpi 9425   ·N cmi 9427   ~Q ceq 9432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6728
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5658  df-fun 5696  df-fn 5697  df-f 5698  df-f1 5699  df-fo 5700  df-f1o 5701  df-fv 5702  df-ov 6434  df-oprab 6435  df-mpt2 6436  df-om 6839  df-1st 6939  df-2nd 6940  df-wrecs 7174  df-recs 7235  df-rdg 7273  df-oadd 7331  df-omul 7332  df-er 7509  df-ni 9453  df-mi 9455  df-enq 9492
This theorem is referenced by:  nqereu  9510  nqerf  9511  nqerid  9514  enqeq  9515  nqereq  9516  adderpq  9537  mulerpq  9538  1nqenq  9543
  Copyright terms: Public domain W3C validator