Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  enrelmapr Structured version   Visualization version   GIF version

Theorem enrelmapr 37771
 Description: The set of all possible relations between two sets is equinumerous to the set of all mappings from one set to the powerset of the other. (Contributed by RP, 27-Apr-2021.)
Assertion
Ref Expression
enrelmapr ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴𝑚 𝐵))

Proof of Theorem enrelmapr
StepHypRef Expression
1 xpcomeng 7996 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) ≈ (𝐵 × 𝐴))
2 pwen 8077 . . 3 ((𝐴 × 𝐵) ≈ (𝐵 × 𝐴) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
31, 2syl 17 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴))
4 enrelmap 37770 . . 3 ((𝐵𝑊𝐴𝑉) → 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴𝑚 𝐵))
54ancoms 469 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴𝑚 𝐵))
6 entr 7952 . 2 ((𝒫 (𝐴 × 𝐵) ≈ 𝒫 (𝐵 × 𝐴) ∧ 𝒫 (𝐵 × 𝐴) ≈ (𝒫 𝐴𝑚 𝐵)) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴𝑚 𝐵))
73, 5, 6syl2anc 692 1 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ≈ (𝒫 𝐴𝑚 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∈ wcel 1987  𝒫 cpw 4130   class class class wbr 4613   × cxp 5072  (class class class)co 6604   ↑𝑚 cmap 7802   ≈ cen 7896 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-1o 7505  df-2o 7506  df-er 7687  df-map 7804  df-en 7900 This theorem is referenced by:  enmappw  37772
 Copyright terms: Public domain W3C validator