MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enrex Structured version   Visualization version   GIF version

Theorem enrex 9745
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.)
Assertion
Ref Expression
enrex ~R ∈ V

Proof of Theorem enrex
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 9665 . . . 4 P ∈ V
21, 1xpex 6838 . . 3 (P × P) ∈ V
32, 2xpex 6838 . 2 ((P × P) × (P × P)) ∈ V
4 df-enr 9734 . . 3 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
5 opabssxp 5106 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} ⊆ ((P × P) × (P × P))
64, 5eqsstri 3598 . 2 ~R ⊆ ((P × P) × (P × P))
73, 6ssexi 4726 1 ~R ∈ V
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131  {copab 4637   × cxp 5026  (class class class)co 6527  Pcnp 9538   +P cpp 9540   ~R cer 9543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-br 4579  df-opab 4639  df-tr 4676  df-eprel 4939  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-om 6936  df-ni 9551  df-nq 9591  df-np 9660  df-enr 9734
This theorem is referenced by:  addsrpr  9753  mulsrpr  9754  ltsrpr  9755  0r  9758  1sr  9759  m1r  9760  addclsr  9761  mulclsr  9762  recexsrlem  9781
  Copyright terms: Public domain W3C validator