MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entr4i Structured version   Visualization version   GIF version

Theorem entr4i 7873
Description: A chained equinumerosity inference. (Contributed by NM, 25-Sep-2004.)
Hypotheses
Ref Expression
entr4i.1 𝐴𝐵
entr4i.2 𝐶𝐵
Assertion
Ref Expression
entr4i 𝐴𝐶

Proof of Theorem entr4i
StepHypRef Expression
1 entr4i.1 . 2 𝐴𝐵
2 entr4i.2 . . 3 𝐶𝐵
32ensymi 7866 . 2 𝐵𝐶
41, 3entri 7870 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 4574  cen 7812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-er 7603  df-en 7816
This theorem is referenced by:  fodomfi  8098  xpnnen  14721  rpnnen  14738  rexpen  14739  cnso  14758
  Copyright terms: Public domain W3C validator