MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  entric Structured version   Visualization version   GIF version

Theorem entric 9231
Description: Trichotomy of equinumerosity and strict dominance. This theorem is equivalent to the Axiom of Choice. Theorem 8 of [Suppes] p. 242. (Contributed by NM, 4-Jan-2004.)
Assertion
Ref Expression
entric ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐴𝐵𝐵𝐴))

Proof of Theorem entric
StepHypRef Expression
1 domtri 9230 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
21biimprd 236 . . . . 5 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴𝐴𝐵))
3 brdom2 7844 . . . . 5 (𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
42, 3syl6ib 239 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴𝐵)))
54con1d 137 . . 3 ((𝐴𝑉𝐵𝑊) → (¬ (𝐴𝐵𝐴𝐵) → 𝐵𝐴))
65orrd 391 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
7 df-3or 1031 . 2 ((𝐴𝐵𝐴𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴𝐵) ∨ 𝐵𝐴))
86, 7sylibr 222 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382  w3o 1029  wcel 1975   class class class wbr 4573  cen 7811  cdom 7812  csdm 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-ac2 9141
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-wrecs 7267  df-recs 7328  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-card 8621  df-ac 8795
This theorem is referenced by:  entri2  9232
  Copyright terms: Public domain W3C validator