![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > episect | Structured version Visualization version GIF version |
Description: If 𝐹 is an epimorphism and 𝐹 is a section of 𝐺, then 𝐺 is an inverse of 𝐹 and they are both isomorphisms. This is also stated as "an epimorphism which is also a split monomorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
sectepi.b | ⊢ 𝐵 = (Base‘𝐶) |
sectepi.e | ⊢ 𝐸 = (Epi‘𝐶) |
sectepi.s | ⊢ 𝑆 = (Sect‘𝐶) |
sectepi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
sectepi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
sectepi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
episect.n | ⊢ 𝑁 = (Inv‘𝐶) |
episect.1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) |
episect.2 | ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) |
Ref | Expression |
---|---|
episect | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (oppCat‘𝐶) = (oppCat‘𝐶) | |
2 | sectepi.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
3 | 1, 2 | oppcbas 16579 | . . 3 ⊢ 𝐵 = (Base‘(oppCat‘𝐶)) |
4 | eqid 2760 | . . 3 ⊢ (Mono‘(oppCat‘𝐶)) = (Mono‘(oppCat‘𝐶)) | |
5 | eqid 2760 | . . 3 ⊢ (Sect‘(oppCat‘𝐶)) = (Sect‘(oppCat‘𝐶)) | |
6 | sectepi.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | 1 | oppccat 16583 | . . . 4 ⊢ (𝐶 ∈ Cat → (oppCat‘𝐶) ∈ Cat) |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → (oppCat‘𝐶) ∈ Cat) |
9 | sectepi.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | sectepi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | eqid 2760 | . . 3 ⊢ (Inv‘(oppCat‘𝐶)) = (Inv‘(oppCat‘𝐶)) | |
12 | episect.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐸𝑌)) | |
13 | sectepi.e | . . . . 5 ⊢ 𝐸 = (Epi‘𝐶) | |
14 | 1, 6, 4, 13 | oppcmon 16599 | . . . 4 ⊢ (𝜑 → (𝑌(Mono‘(oppCat‘𝐶))𝑋) = (𝑋𝐸𝑌)) |
15 | 12, 14 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑌(Mono‘(oppCat‘𝐶))𝑋)) |
16 | episect.2 | . . . 4 ⊢ (𝜑 → 𝐹(𝑋𝑆𝑌)𝐺) | |
17 | sectepi.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
18 | 2, 1, 6, 10, 9, 17, 5 | oppcsect 16639 | . . . 4 ⊢ (𝜑 → (𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
19 | 16, 18 | mpbird 247 | . . 3 ⊢ (𝜑 → 𝐺(𝑋(Sect‘(oppCat‘𝐶))𝑌)𝐹) |
20 | 3, 4, 5, 8, 9, 10, 11, 15, 19 | monsect 16644 | . 2 ⊢ (𝜑 → 𝐹(𝑌(Inv‘(oppCat‘𝐶))𝑋)𝐺) |
21 | episect.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
22 | 2, 1, 6, 9, 10, 21, 11 | oppcinv 16641 | . . 3 ⊢ (𝜑 → (𝑌(Inv‘(oppCat‘𝐶))𝑋) = (𝑋𝑁𝑌)) |
23 | 22 | breqd 4815 | . 2 ⊢ (𝜑 → (𝐹(𝑌(Inv‘(oppCat‘𝐶))𝑋)𝐺 ↔ 𝐹(𝑋𝑁𝑌)𝐺)) |
24 | 20, 23 | mpbid 222 | 1 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 Catccat 16526 oppCatcoppc 16572 Monocmon 16589 Epicepi 16590 Sectcsect 16605 Invcinv 16606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-hom 16168 df-cco 16169 df-cat 16530 df-cid 16531 df-oppc 16573 df-mon 16591 df-epi 16592 df-sect 16608 df-inv 16609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |