![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqbrriv | Structured version Visualization version GIF version |
Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.) |
Ref | Expression |
---|---|
eqbrriv.1 | ⊢ Rel 𝐴 |
eqbrriv.2 | ⊢ Rel 𝐵 |
eqbrriv.3 | ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) |
Ref | Expression |
---|---|
eqbrriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrriv.1 | . 2 ⊢ Rel 𝐴 | |
2 | eqbrriv.2 | . 2 ⊢ Rel 𝐵 | |
3 | eqbrriv.3 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 𝑥𝐵𝑦) | |
4 | df-br 4805 | . . 3 ⊢ (𝑥𝐴𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴) | |
5 | df-br 4805 | . . 3 ⊢ (𝑥𝐵𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) | |
6 | 3, 4, 5 | 3bitr3i 290 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐵) |
7 | 1, 2, 6 | eqrelriiv 5371 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 〈cop 4327 class class class wbr 4804 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-in 3722 df-ss 3729 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 |
This theorem is referenced by: resco 5800 tpostpos 7541 sbthcl 8247 dfle2 12173 dflt2 12174 idsset 32303 dfbigcup2 32312 imageval 32343 inxpxrn 34476 |
Copyright terms: Public domain | W3C validator |