Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqbrriv Structured version   Visualization version   GIF version

Theorem eqbrriv 5372
 Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006.)
Hypotheses
Ref Expression
eqbrriv.1 Rel 𝐴
eqbrriv.2 Rel 𝐵
eqbrriv.3 (𝑥𝐴𝑦𝑥𝐵𝑦)
Assertion
Ref Expression
eqbrriv 𝐴 = 𝐵
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem eqbrriv
StepHypRef Expression
1 eqbrriv.1 . 2 Rel 𝐴
2 eqbrriv.2 . 2 Rel 𝐵
3 eqbrriv.3 . . 3 (𝑥𝐴𝑦𝑥𝐵𝑦)
4 df-br 4805 . . 3 (𝑥𝐴𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴)
5 df-br 4805 . . 3 (𝑥𝐵𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
63, 4, 53bitr3i 290 . 2 (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐵)
71, 2, 6eqrelriiv 5371 1 𝐴 = 𝐵
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   = wceq 1632   ∈ wcel 2139  ⟨cop 4327   class class class wbr 4804  Rel wrel 5271 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-in 3722  df-ss 3729  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273 This theorem is referenced by:  resco  5800  tpostpos  7541  sbthcl  8247  dfle2  12173  dflt2  12174  idsset  32303  dfbigcup2  32312  imageval  32343  inxpxrn  34476
 Copyright terms: Public domain W3C validator