Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeng Structured version   Visualization version   GIF version

Theorem eqeng 7949
 Description: Equality implies equinumerosity. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
eqeng (𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))

Proof of Theorem eqeng
StepHypRef Expression
1 enrefg 7947 . 2 (𝐴𝑉𝐴𝐴)
2 breq2 4627 . 2 (𝐴 = 𝐵 → (𝐴𝐴𝐴𝐵))
31, 2syl5ibcom 235 1 (𝐴𝑉 → (𝐴 = 𝐵𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987   class class class wbr 4623   ≈ cen 7912 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-en 7916 This theorem is referenced by:  idssen  7960  nneneq  8103  onomeneq  8110  pr2ne  8788  alephord  8858  alephdom  8864  fin23lem25  9106  alephadd  9359  rp-isfinite5  37383
 Copyright terms: Public domain W3C validator