Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqfnun Structured version   Visualization version   GIF version

Theorem eqfnun 34999
Description: Two functions on 𝐴𝐵 are equal if and only if they have equal restrictions to both 𝐴 and 𝐵. (Contributed by Jeff Madsen, 19-Jun-2011.)
Assertion
Ref Expression
eqfnun ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))

Proof of Theorem eqfnun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 reseq1 5849 . . 3 (𝐹 = 𝐺 → (𝐹𝐴) = (𝐺𝐴))
2 reseq1 5849 . . 3 (𝐹 = 𝐺 → (𝐹𝐵) = (𝐺𝐵))
31, 2jca 514 . 2 (𝐹 = 𝐺 → ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)))
4 elun 4127 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
5 fveq1 6671 . . . . . . . . 9 ((𝐹𝐴) = (𝐺𝐴) → ((𝐹𝐴)‘𝑥) = ((𝐺𝐴)‘𝑥))
6 fvres 6691 . . . . . . . . 9 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
75, 6sylan9req 2879 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐹𝑥))
8 fvres 6691 . . . . . . . . 9 (𝑥𝐴 → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
98adantl 484 . . . . . . . 8 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → ((𝐺𝐴)‘𝑥) = (𝐺𝑥))
107, 9eqtr3d 2860 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
1110adantlr 713 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))
12 fveq1 6671 . . . . . . . . 9 ((𝐹𝐵) = (𝐺𝐵) → ((𝐹𝐵)‘𝑥) = ((𝐺𝐵)‘𝑥))
13 fvres 6691 . . . . . . . . 9 (𝑥𝐵 → ((𝐹𝐵)‘𝑥) = (𝐹𝑥))
1412, 13sylan9req 2879 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐹𝑥))
15 fvres 6691 . . . . . . . . 9 (𝑥𝐵 → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1615adantl 484 . . . . . . . 8 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → ((𝐺𝐵)‘𝑥) = (𝐺𝑥))
1714, 16eqtr3d 2860 . . . . . . 7 (((𝐹𝐵) = (𝐺𝐵) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1817adantll 712 . . . . . 6 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
1911, 18jaodan 954 . . . . 5 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ (𝑥𝐴𝑥𝐵)) → (𝐹𝑥) = (𝐺𝑥))
204, 19sylan2b 595 . . . 4 ((((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝐹𝑥) = (𝐺𝑥))
2120ralrimiva 3184 . . 3 (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥))
22 eqfnfv 6804 . . 3 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = (𝐺𝑥)))
2321, 22syl5ibr 248 . 2 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵)) → 𝐹 = 𝐺))
243, 23impbid2 228 1 ((𝐹 Fn (𝐴𝐵) ∧ 𝐺 Fn (𝐴𝐵)) → (𝐹 = 𝐺 ↔ ((𝐹𝐴) = (𝐺𝐴) ∧ (𝐹𝐵) = (𝐺𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  cun 3936  cres 5559   Fn wfn 6352  cfv 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator