MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqif Structured version   Visualization version   GIF version

Theorem eqif 4509
Description: Expansion of an equality with a conditional operator. (Contributed by NM, 14-Feb-2005.)
Assertion
Ref Expression
eqif (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))

Proof of Theorem eqif
StepHypRef Expression
1 eqeq2 2835 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐵 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐵))
2 eqeq2 2835 . 2 (if(𝜑, 𝐵, 𝐶) = 𝐶 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ 𝐴 = 𝐶))
31, 2elimif 4505 1 (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843   = wceq 1537  ifcif 4469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ex 1781  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-if 4470
This theorem is referenced by:  ifval  4510  xpima  6041  fin23lem19  9760  fin23lem28  9764  fin23lem29  9765  fin23lem30  9766  aalioulem3  24925  iocinif  30506  fsumcvg4  31195  ind1a  31280  esumsnf  31325  itg2addnclem2  34946  clsk1indlem4  40401  afvpcfv0  43352
  Copyright terms: Public domain W3C validator