Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqinfd Structured version   Visualization version   GIF version

Theorem eqinfd 8351
 Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
eqinfd.2 (𝜑𝐶𝐴)
eqinfd.3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
eqinfd.4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
Assertion
Ref Expression
eqinfd (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem eqinfd
StepHypRef Expression
1 eqinfd.2 . 2 (𝜑𝐶𝐴)
2 eqinfd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
32ralrimiva 2962 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝑦𝑅𝐶)
4 eqinfd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
54expr 642 . . 3 ((𝜑𝑦𝐴) → (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
65ralrimiva 2962 . 2 (𝜑 → ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
7 infexd.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqinf 8350 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1424 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2908  ∃wrex 2909   class class class wbr 4623   Or wor 5004  infcinf 8307 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-po 5005  df-so 5006  df-cnv 5092  df-iota 5820  df-riota 6576  df-sup 8308  df-inf 8309 This theorem is referenced by:  infmin  8360  xrinf0  12126  infmremnf  12131  infmrp1  12132
 Copyright terms: Public domain W3C validator