![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqlei2 | Structured version Visualization version GIF version |
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
Ref | Expression |
---|---|
eqlei2 | ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
2 | eleq1a 2832 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ∈ ℝ)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐵 = 𝐴 → 𝐵 ∈ ℝ) |
4 | eqcom 2765 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | letri3 10313 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) | |
6 | 1, 5 | mpan 708 | . . . 4 ⊢ (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
7 | 4, 6 | syl5bb 272 | . . 3 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴))) |
8 | simpr 479 | . . 3 ⊢ ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐴) → 𝐵 ≤ 𝐴) | |
9 | 7, 8 | syl6bi 243 | . 2 ⊢ (𝐵 ∈ ℝ → (𝐵 = 𝐴 → 𝐵 ≤ 𝐴)) |
10 | 3, 9 | mpcom 38 | 1 ⊢ (𝐵 = 𝐴 → 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 class class class wbr 4802 ℝcr 10125 ≤ cle 10265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-resscn 10183 ax-pre-lttri 10200 ax-pre-lttrn 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-po 5185 df-so 5186 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 |
This theorem is referenced by: usgruspgr 26270 konigsbergssiedgw 27400 fourierswlem 40948 |
Copyright terms: Public domain | W3C validator |