MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqlei2 Structured version   Visualization version   GIF version

Theorem eqlei2 10338
Description: Equality implies 'less than or equal to'. (Contributed by Alexander van der Vekens, 20-Mar-2018.)
Hypothesis
Ref Expression
lt.1 𝐴 ∈ ℝ
Assertion
Ref Expression
eqlei2 (𝐵 = 𝐴𝐵𝐴)

Proof of Theorem eqlei2
StepHypRef Expression
1 lt.1 . . 3 𝐴 ∈ ℝ
2 eleq1a 2832 . . 3 (𝐴 ∈ ℝ → (𝐵 = 𝐴𝐵 ∈ ℝ))
31, 2ax-mp 5 . 2 (𝐵 = 𝐴𝐵 ∈ ℝ)
4 eqcom 2765 . . . 4 (𝐵 = 𝐴𝐴 = 𝐵)
5 letri3 10313 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
61, 5mpan 708 . . . 4 (𝐵 ∈ ℝ → (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴)))
74, 6syl5bb 272 . . 3 (𝐵 ∈ ℝ → (𝐵 = 𝐴 ↔ (𝐴𝐵𝐵𝐴)))
8 simpr 479 . . 3 ((𝐴𝐵𝐵𝐴) → 𝐵𝐴)
97, 8syl6bi 243 . 2 (𝐵 ∈ ℝ → (𝐵 = 𝐴𝐵𝐴))
103, 9mpcom 38 1 (𝐵 = 𝐴𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1630  wcel 2137   class class class wbr 4802  cr 10125  cle 10265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-resscn 10183  ax-pre-lttri 10200  ax-pre-lttrn 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-po 5185  df-so 5186  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270
This theorem is referenced by:  usgruspgr  26270  konigsbergssiedgw  27400  fourierswlem  40948
  Copyright terms: Public domain W3C validator