Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr2 Structured version   Visualization version   GIF version

Theorem eqlkr2 33902
 Description: Two functionals with the same kernel are the same up to a constant. (Contributed by NM, 10-Oct-2014.)
Hypotheses
Ref Expression
eqlkr.d 𝐷 = (Scalar‘𝑊)
eqlkr.k 𝐾 = (Base‘𝐷)
eqlkr.t · = (.r𝐷)
eqlkr.v 𝑉 = (Base‘𝑊)
eqlkr.f 𝐹 = (LFnl‘𝑊)
eqlkr.l 𝐿 = (LKer‘𝑊)
Assertion
Ref Expression
eqlkr2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺𝑓 · (𝑉 × {𝑟})))
Distinct variable groups:   𝐷,𝑟   𝐺,𝑟   𝐻,𝑟   𝑉,𝑟   𝐾,𝑟   · ,𝑟   𝐹,𝑟   𝐿,𝑟   𝑊,𝑟

Proof of Theorem eqlkr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqlkr.d . . 3 𝐷 = (Scalar‘𝑊)
2 eqlkr.k . . 3 𝐾 = (Base‘𝐷)
3 eqlkr.t . . 3 · = (.r𝐷)
4 eqlkr.v . . 3 𝑉 = (Base‘𝑊)
5 eqlkr.f . . 3 𝐹 = (LFnl‘𝑊)
6 eqlkr.l . . 3 𝐿 = (LKer‘𝑊)
71, 2, 3, 4, 5, 6eqlkr 33901 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟))
8 fvex 6163 . . . . . 6 (Base‘𝑊) ∈ V
94, 8eqeltri 2694 . . . . 5 𝑉 ∈ V
109a1i 11 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑉 ∈ V)
11 simpl1 1062 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝑊 ∈ LVec)
12 simpl2l 1112 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺𝐹)
131, 2, 4, 5lflf 33865 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
1411, 12, 13syl2anc 692 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺:𝑉𝐾)
15 ffn 6007 . . . . 5 (𝐺:𝑉𝐾𝐺 Fn 𝑉)
1614, 15syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐺 Fn 𝑉)
17 vex 3192 . . . . 5 𝑟 ∈ V
18 fnconstg 6055 . . . . 5 (𝑟 ∈ V → (𝑉 × {𝑟}) Fn 𝑉)
1917, 18mp1i 13 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝑉 × {𝑟}) Fn 𝑉)
20 simpl2r 1113 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻𝐹)
211, 2, 4, 5lflf 33865 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝐾)
2211, 20, 21syl2anc 692 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻:𝑉𝐾)
23 ffn 6007 . . . . 5 (𝐻:𝑉𝐾𝐻 Fn 𝑉)
2422, 23syl 17 . . . 4 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → 𝐻 Fn 𝑉)
25 eqidd 2622 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → (𝐺𝑥) = (𝐺𝑥))
2617fvconst2 6429 . . . . 5 (𝑥𝑉 → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
2726adantl 482 . . . 4 ((((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) ∧ 𝑥𝑉) → ((𝑉 × {𝑟})‘𝑥) = 𝑟)
2810, 16, 19, 24, 25, 27offveqb 6879 . . 3 (((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) ∧ 𝑟𝐾) → (𝐻 = (𝐺𝑓 · (𝑉 × {𝑟})) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
2928rexbidva 3043 . 2 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → (∃𝑟𝐾 𝐻 = (𝐺𝑓 · (𝑉 × {𝑟})) ↔ ∃𝑟𝐾𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥) · 𝑟)))
307, 29mpbird 247 1 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐿𝐺) = (𝐿𝐻)) → ∃𝑟𝐾 𝐻 = (𝐺𝑓 · (𝑉 × {𝑟})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  Vcvv 3189  {csn 4153   × cxp 5077   Fn wfn 5847  ⟶wf 5848  ‘cfv 5852  (class class class)co 6610   ∘𝑓 cof 6855  Basecbs 15792  .rcmulr 15874  Scalarcsca 15876  LVecclvec 19034  LFnlclfn 33859  LKerclk 33887 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-sbg 17359  df-cmn 18127  df-abl 18128  df-mgp 18422  df-ur 18434  df-ring 18481  df-oppr 18555  df-dvdsr 18573  df-unit 18574  df-invr 18604  df-drng 18681  df-lmod 18797  df-lvec 19035  df-lfl 33860  df-lkr 33888 This theorem is referenced by:  lfl1dim  33923  lfl1dim2N  33924  eqlkr4  33967
 Copyright terms: Public domain W3C validator