![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsbc3r | Structured version Visualization version GIF version |
Description: eqsbc3 3508 with setvar variable on right side of equals sign. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.) |
Ref | Expression |
---|---|
eqsbc3r | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsbc3 3508 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑥 = 𝐵 ↔ 𝐴 = 𝐵)) | |
2 | eqcom 2658 | . . 3 ⊢ (𝐵 = 𝑥 ↔ 𝑥 = 𝐵) | |
3 | 2 | sbcbii 3524 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ [𝐴 / 𝑥]𝑥 = 𝐵) |
4 | eqcom 2658 | . 2 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 1, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 = 𝑥 ↔ 𝐵 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-v 3233 df-sbc 3469 |
This theorem is referenced by: sbcoreleleq 39062 sbcoreleleqVD 39409 |
Copyright terms: Public domain | W3C validator |