MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsqrtd Structured version   Visualization version   GIF version

Theorem eqsqrtd 14326
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
eqsqrtd.1 (𝜑𝐴 ∈ ℂ)
eqsqrtd.2 (𝜑𝐵 ∈ ℂ)
eqsqrtd.3 (𝜑 → (𝐴↑2) = 𝐵)
eqsqrtd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
eqsqrtd.5 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
Assertion
Ref Expression
eqsqrtd (𝜑𝐴 = (√‘𝐵))

Proof of Theorem eqsqrtd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqsqrtd.2 . . 3 (𝜑𝐵 ∈ ℂ)
2 sqreu 14319 . . 3 (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3 reurmo 3300 . . 3 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
41, 2, 33syl 18 . 2 (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 eqsqrtd.1 . 2 (𝜑𝐴 ∈ ℂ)
6 eqsqrtd.3 . . 3 (𝜑 → (𝐴↑2) = 𝐵)
7 eqsqrtd.4 . . 3 (𝜑 → 0 ≤ (ℜ‘𝐴))
8 eqsqrtd.5 . . . 4 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
9 df-nel 3036 . . . 4 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
108, 9sylibr 224 . . 3 (𝜑 → (i · 𝐴) ∉ ℝ+)
116, 7, 103jca 1123 . 2 (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))
12 sqrtcl 14320 . . 3 (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ)
131, 12syl 17 . 2 (𝜑 → (√‘𝐵) ∈ ℂ)
14 sqrtthlem 14321 . . 3 (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
151, 14syl 17 . 2 (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
16 oveq1 6821 . . . . 5 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1716eqeq1d 2762 . . . 4 (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵))
18 fveq2 6353 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
1918breq2d 4816 . . . 4 (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴)))
20 oveq2 6822 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21 neleq1 3040 . . . . 5 ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2220, 21syl 17 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2317, 19, 223anbi123d 1548 . . 3 (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
24 oveq1 6821 . . . . 5 (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2))
2524eqeq1d 2762 . . . 4 (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵))
26 fveq2 6353 . . . . 5 (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵)))
2726breq2d 4816 . . . 4 (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵))))
28 oveq2 6822 . . . . 5 (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵)))
29 neleq1 3040 . . . . 5 ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3028, 29syl 17 . . . 4 (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3125, 27, 303anbi123d 1548 . . 3 (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)))
3223, 31rmoi 3671 . 2 ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵))
334, 5, 11, 13, 15, 32syl122anc 1486 1 (𝜑𝐴 = (√‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1072   = wceq 1632  wcel 2139  wnel 3035  ∃!wreu 3052  ∃*wrmo 3053   class class class wbr 4804  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  ici 10150   · cmul 10153  cle 10287  2c2 11282  +crp 12045  cexp 13074  cre 14056  csqrt 14192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195
This theorem is referenced by:  eqsqrt2d  14327  cphsqrtcl2  23206
  Copyright terms: Public domain W3C validator