MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsqrtd Structured version   Visualization version   GIF version

Theorem eqsqrtd 13904
Description: A deduction for showing that a number equals the square root of another. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
eqsqrd.1 (𝜑𝐴 ∈ ℂ)
eqsqrd.2 (𝜑𝐵 ∈ ℂ)
eqsqrd.3 (𝜑 → (𝐴↑2) = 𝐵)
eqsqrd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
eqsqrd.5 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
Assertion
Ref Expression
eqsqrtd (𝜑𝐴 = (√‘𝐵))

Proof of Theorem eqsqrtd
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqsqrd.2 . . 3 (𝜑𝐵 ∈ ℂ)
2 sqreu 13897 . . 3 (𝐵 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
3 reurmo 3138 . . 3 (∃!𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
41, 2, 33syl 18 . 2 (𝜑 → ∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
5 eqsqrd.1 . 2 (𝜑𝐴 ∈ ℂ)
6 eqsqrd.3 . . 3 (𝜑 → (𝐴↑2) = 𝐵)
7 eqsqrd.4 . . 3 (𝜑 → 0 ≤ (ℜ‘𝐴))
8 eqsqrd.5 . . . 4 (𝜑 → ¬ (i · 𝐴) ∈ ℝ+)
9 df-nel 2783 . . . 4 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
108, 9sylibr 223 . . 3 (𝜑 → (i · 𝐴) ∉ ℝ+)
116, 7, 103jca 1235 . 2 (𝜑 → ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+))
12 sqrtcl 13898 . . 3 (𝐵 ∈ ℂ → (√‘𝐵) ∈ ℂ)
131, 12syl 17 . 2 (𝜑 → (√‘𝐵) ∈ ℂ)
14 sqrtthlem 13899 . . 3 (𝐵 ∈ ℂ → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
151, 14syl 17 . 2 (𝜑 → (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))
16 oveq1 6534 . . . . 5 (𝑥 = 𝐴 → (𝑥↑2) = (𝐴↑2))
1716eqeq1d 2612 . . . 4 (𝑥 = 𝐴 → ((𝑥↑2) = 𝐵 ↔ (𝐴↑2) = 𝐵))
18 fveq2 6088 . . . . 5 (𝑥 = 𝐴 → (ℜ‘𝑥) = (ℜ‘𝐴))
1918breq2d 4590 . . . 4 (𝑥 = 𝐴 → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘𝐴)))
20 oveq2 6535 . . . . 5 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21 neleq1 2888 . . . . 5 ((i · 𝑥) = (i · 𝐴) → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2220, 21syl 17 . . . 4 (𝑥 = 𝐴 → ((i · 𝑥) ∉ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
2317, 19, 223anbi123d 1391 . . 3 (𝑥 = 𝐴 → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
24 oveq1 6534 . . . . 5 (𝑥 = (√‘𝐵) → (𝑥↑2) = ((√‘𝐵)↑2))
2524eqeq1d 2612 . . . 4 (𝑥 = (√‘𝐵) → ((𝑥↑2) = 𝐵 ↔ ((√‘𝐵)↑2) = 𝐵))
26 fveq2 6088 . . . . 5 (𝑥 = (√‘𝐵) → (ℜ‘𝑥) = (ℜ‘(√‘𝐵)))
2726breq2d 4590 . . . 4 (𝑥 = (√‘𝐵) → (0 ≤ (ℜ‘𝑥) ↔ 0 ≤ (ℜ‘(√‘𝐵))))
28 oveq2 6535 . . . . 5 (𝑥 = (√‘𝐵) → (i · 𝑥) = (i · (√‘𝐵)))
29 neleq1 2888 . . . . 5 ((i · 𝑥) = (i · (√‘𝐵)) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3028, 29syl 17 . . . 4 (𝑥 = (√‘𝐵) → ((i · 𝑥) ∉ ℝ+ ↔ (i · (√‘𝐵)) ∉ ℝ+))
3125, 27, 303anbi123d 1391 . . 3 (𝑥 = (√‘𝐵) → (((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+)))
3223, 31rmoi 3496 . 2 ((∃*𝑥 ∈ ℂ ((𝑥↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ∧ (𝐴 ∈ ℂ ∧ ((𝐴↑2) = 𝐵 ∧ 0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)) ∧ ((√‘𝐵) ∈ ℂ ∧ (((√‘𝐵)↑2) = 𝐵 ∧ 0 ≤ (ℜ‘(√‘𝐵)) ∧ (i · (√‘𝐵)) ∉ ℝ+))) → 𝐴 = (√‘𝐵))
334, 5, 11, 13, 15, 32syl122anc 1327 1 (𝜑𝐴 = (√‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  w3a 1031   = wceq 1475  wcel 1977  wnel 2781  ∃!wreu 2898  ∃*wrmo 2899   class class class wbr 4578  cfv 5790  (class class class)co 6527  cc 9791  0cc0 9793  ici 9795   · cmul 9798  cle 9932  2c2 10920  +crp 11667  cexp 12680  cre 13634  csqrt 13770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-seq 12622  df-exp 12681  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773
This theorem is referenced by:  eqsqrt2d  13905  cphsqrtcl2  22739
  Copyright terms: Public domain W3C validator