MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equeucl Structured version   Visualization version   GIF version

Theorem equeucl 1949
Description: Equality is a left-Euclidean binary relation. (Right-Euclideanness is stated in ax-7 1933.) Curried (exported) form of equtr2 1952. (Contributed by BJ, 11-Apr-2021.)
Assertion
Ref Expression
equeucl (𝑥 = 𝑧 → (𝑦 = 𝑧𝑥 = 𝑦))

Proof of Theorem equeucl
StepHypRef Expression
1 equeuclr 1948 . 2 (𝑦 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑦))
21com12 32 1 (𝑥 = 𝑧 → (𝑦 = 𝑧𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by:  equtr2  1952  ax13lem1  2246  ax13lem2  2294  bj-ax6elem2  32627  wl-ax13lem1  33258
  Copyright terms: Public domain W3C validator