Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd Structured version   Visualization version   GIF version

Theorem equivbnd 35070
Description: If the metric 𝑀 is "strongly finer" than 𝑁 (meaning that there is a positive real constant 𝑅 such that 𝑁(𝑥, 𝑦) ≤ 𝑅 · 𝑀(𝑥, 𝑦)), then boundedness of 𝑀 implies boundedness of 𝑁. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivbnd.1 (𝜑𝑀 ∈ (Bnd‘𝑋))
equivbnd.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd.3 (𝜑𝑅 ∈ ℝ+)
equivbnd.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
Assertion
Ref Expression
equivbnd (𝜑𝑁 ∈ (Bnd‘𝑋))
Distinct variable groups:   𝑥,𝑦,𝑀   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑅,𝑦

Proof of Theorem equivbnd
Dummy variables 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 equivbnd.2 . 2 (𝜑𝑁 ∈ (Met‘𝑋))
2 equivbnd.1 . . . 4 (𝜑𝑀 ∈ (Bnd‘𝑋))
3 isbnd3b 35065 . . . . 5 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟))
43simprbi 499 . . . 4 (𝑀 ∈ (Bnd‘𝑋) → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
52, 4syl 17 . . 3 (𝜑 → ∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟)
6 equivbnd.3 . . . . . . 7 (𝜑𝑅 ∈ ℝ+)
76rpred 12434 . . . . . 6 (𝜑𝑅 ∈ ℝ)
8 remulcl 10624 . . . . . 6 ((𝑅 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
97, 8sylan 582 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑅 · 𝑟) ∈ ℝ)
10 bndmet 35061 . . . . . . . . . . 11 (𝑀 ∈ (Bnd‘𝑋) → 𝑀 ∈ (Met‘𝑋))
112, 10syl 17 . . . . . . . . . 10 (𝜑𝑀 ∈ (Met‘𝑋))
1211adantr 483 . . . . . . . . 9 ((𝜑𝑟 ∈ ℝ) → 𝑀 ∈ (Met‘𝑋))
13 metcl 22944 . . . . . . . . . 10 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑀𝑦) ∈ ℝ)
14133expb 1116 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
1512, 14sylan 582 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ∈ ℝ)
16 simplr 767 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑟 ∈ ℝ)
176ad2antrr 724 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ+)
1815, 16, 17lemul2d 12478 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 ↔ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)))
19 equivbnd.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
2019adantlr 713 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
211adantr 483 . . . . . . . . . 10 ((𝜑𝑟 ∈ ℝ) → 𝑁 ∈ (Met‘𝑋))
22 metcl 22944 . . . . . . . . . . 11 ((𝑁 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝑁𝑦) ∈ ℝ)
23223expb 1116 . . . . . . . . . 10 ((𝑁 ∈ (Met‘𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
2421, 23sylan 582 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ∈ ℝ)
257ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → 𝑅 ∈ ℝ)
2625, 15remulcld 10673 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ)
279adantr 483 . . . . . . . . 9 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (𝑅 · 𝑟) ∈ ℝ)
28 letr 10736 . . . . . . . . 9 (((𝑥𝑁𝑦) ∈ ℝ ∧ (𝑅 · (𝑥𝑀𝑦)) ∈ ℝ ∧ (𝑅 · 𝑟) ∈ ℝ) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
2924, 26, 27, 28syl3anc 1367 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)) ∧ (𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟)) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3020, 29mpand 693 . . . . . . 7 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑅 · (𝑥𝑀𝑦)) ≤ (𝑅 · 𝑟) → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3118, 30sylbid 242 . . . . . 6 (((𝜑𝑟 ∈ ℝ) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥𝑀𝑦) ≤ 𝑟 → (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3231ralimdvva 3181 . . . . 5 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
33 breq2 5072 . . . . . . 7 (𝑠 = (𝑅 · 𝑟) → ((𝑥𝑁𝑦) ≤ 𝑠 ↔ (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
34332ralbidv 3201 . . . . . 6 (𝑠 = (𝑅 · 𝑟) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)))
3534rspcev 3625 . . . . 5 (((𝑅 · 𝑟) ∈ ℝ ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ (𝑅 · 𝑟)) → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
369, 32, 35syl6an 682 . . . 4 ((𝜑𝑟 ∈ ℝ) → (∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
3736rexlimdva 3286 . . 3 (𝜑 → (∃𝑟 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑀𝑦) ≤ 𝑟 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
385, 37mpd 15 . 2 (𝜑 → ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠)
39 isbnd3b 35065 . 2 (𝑁 ∈ (Bnd‘𝑋) ↔ (𝑁 ∈ (Met‘𝑋) ∧ ∃𝑠 ∈ ℝ ∀𝑥𝑋𝑦𝑋 (𝑥𝑁𝑦) ≤ 𝑠))
401, 38, 39sylanbrc 585 1 (𝜑𝑁 ∈ (Bnd‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538   · cmul 10544  cle 10678  +crp 12392  Metcmet 20533  Bndcbnd 35047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-ec 8293  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-2 11703  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-icc 12748  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-bnd 35059
This theorem is referenced by:  equivbnd2  35072
  Copyright terms: Public domain W3C validator