Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  equivbnd2 Structured version   Visualization version   GIF version

Theorem equivbnd2 35064
Description: If balls are totally bounded in the metric 𝑀, then balls are totally bounded in the equivalent metric 𝑁. (Contributed by Mario Carneiro, 15-Sep-2015.)
Hypotheses
Ref Expression
equivbnd2.1 (𝜑𝑀 ∈ (Met‘𝑋))
equivbnd2.2 (𝜑𝑁 ∈ (Met‘𝑋))
equivbnd2.3 (𝜑𝑅 ∈ ℝ+)
equivbnd2.4 (𝜑𝑆 ∈ ℝ+)
equivbnd2.5 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
equivbnd2.6 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
equivbnd2.7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
equivbnd2.8 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
equivbnd2.9 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
Assertion
Ref Expression
equivbnd2 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem equivbnd2
StepHypRef Expression
1 totbndbnd 35061 . 2 (𝐷 ∈ (TotBnd‘𝑌) → 𝐷 ∈ (Bnd‘𝑌))
2 simpr 487 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Bnd‘𝑌))
3 equivbnd2.7 . . . . . . 7 𝐶 = (𝑀 ↾ (𝑌 × 𝑌))
4 equivbnd2.1 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
54adantr 483 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑀 ∈ (Met‘𝑋))
6 equivbnd2.2 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑋))
7 equivbnd2.8 . . . . . . . . . 10 𝐷 = (𝑁 ↾ (𝑌 × 𝑌))
87bnd2lem 35063 . . . . . . . . 9 ((𝑁 ∈ (Met‘𝑋) ∧ 𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
96, 8sylan 582 . . . . . . . 8 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑌𝑋)
10 metres2 22967 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑌𝑋) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
115, 9, 10syl2anc 586 . . . . . . 7 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → (𝑀 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
123, 11eqeltrid 2917 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Met‘𝑌))
13 equivbnd2.4 . . . . . . 7 (𝜑𝑆 ∈ ℝ+)
1413adantr 483 . . . . . 6 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑆 ∈ ℝ+)
159sselda 3966 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑥𝑌) → 𝑥𝑋)
169sselda 3966 . . . . . . . . 9 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ 𝑦𝑌) → 𝑦𝑋)
1715, 16anim12dan 620 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
18 equivbnd2.6 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
1918adantlr 713 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
2017, 19syldan 593 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑀𝑦) ≤ (𝑆 · (𝑥𝑁𝑦)))
213oveqi 7163 . . . . . . . . 9 (𝑥𝐶𝑦) = (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦)
22 ovres 7308 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑀 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑀𝑦))
2321, 22syl5eq 2868 . . . . . . . 8 ((𝑥𝑌𝑦𝑌) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
2423adantl 484 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) = (𝑥𝑀𝑦))
257oveqi 7163 . . . . . . . . . 10 (𝑥𝐷𝑦) = (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦)
26 ovres 7308 . . . . . . . . . 10 ((𝑥𝑌𝑦𝑌) → (𝑥(𝑁 ↾ (𝑌 × 𝑌))𝑦) = (𝑥𝑁𝑦))
2725, 26syl5eq 2868 . . . . . . . . 9 ((𝑥𝑌𝑦𝑌) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2827adantl 484 . . . . . . . 8 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) = (𝑥𝑁𝑦))
2928oveq2d 7166 . . . . . . 7 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑆 · (𝑥𝐷𝑦)) = (𝑆 · (𝑥𝑁𝑦)))
3020, 24, 293brtr4d 5090 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐶𝑦) ≤ (𝑆 · (𝑥𝐷𝑦)))
312, 12, 14, 30equivbnd 35062 . . . . 5 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (Bnd‘𝑌))
32 equivbnd2.9 . . . . . 6 (𝜑 → (𝐶 ∈ (TotBnd‘𝑌) ↔ 𝐶 ∈ (Bnd‘𝑌)))
3332biimpar 480 . . . . 5 ((𝜑𝐶 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
3431, 33syldan 593 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐶 ∈ (TotBnd‘𝑌))
35 bndmet 35053 . . . . 5 (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (Met‘𝑌))
3635adantl 484 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (Met‘𝑌))
37 equivbnd2.3 . . . . 5 (𝜑𝑅 ∈ ℝ+)
3837adantr 483 . . . 4 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝑅 ∈ ℝ+)
39 equivbnd2.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4039adantlr 713 . . . . . 6 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4117, 40syldan 593 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑁𝑦) ≤ (𝑅 · (𝑥𝑀𝑦)))
4224oveq2d 7166 . . . . 5 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑅 · (𝑥𝐶𝑦)) = (𝑅 · (𝑥𝑀𝑦)))
4341, 28, 423brtr4d 5090 . . . 4 (((𝜑𝐷 ∈ (Bnd‘𝑌)) ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝐷𝑦) ≤ (𝑅 · (𝑥𝐶𝑦)))
4434, 36, 38, 43equivtotbnd 35050 . . 3 ((𝜑𝐷 ∈ (Bnd‘𝑌)) → 𝐷 ∈ (TotBnd‘𝑌))
4544ex 415 . 2 (𝜑 → (𝐷 ∈ (Bnd‘𝑌) → 𝐷 ∈ (TotBnd‘𝑌)))
461, 45impbid2 228 1 (𝜑 → (𝐷 ∈ (TotBnd‘𝑌) ↔ 𝐷 ∈ (Bnd‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935   class class class wbr 5058   × cxp 5547  cres 5551  cfv 6349  (class class class)co 7150   · cmul 10536  cle 10670  +crp 12383  Metcmet 20525  TotBndctotbnd 35038  Bndcbnd 35039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-2 11694  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-totbnd 35040  df-bnd 35051
This theorem is referenced by:  rrntotbnd  35108
  Copyright terms: Public domain W3C validator