MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcau Structured version   Visualization version   GIF version

Theorem equivcau 23290
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy sequences are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcau (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcau
Dummy variables 𝑓 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 764 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 12074 . . . . . 6 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 6813 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑓𝑘)(ball‘𝐷)𝑠) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
65feq3d 6185 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
76rexbidv 3182 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
87rspcv 3437 . . . . . 6 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
94, 8syl 17 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
10 simprr 813 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
11 elpmi 8034 . . . . . . . . . . . 12 (𝑓 ∈ (𝑋pm ℂ) → (𝑓:dom 𝑓𝑋 ∧ dom 𝑓 ⊆ ℂ))
1211simpld 477 . . . . . . . . . . 11 (𝑓 ∈ (𝑋pm ℂ) → 𝑓:dom 𝑓𝑋)
1312ad3antlr 769 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑓:dom 𝑓𝑋)
14 resss 5572 . . . . . . . . . . . 12 (𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓
15 dmss 5470 . . . . . . . . . . . 12 ((𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓 → dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓)
1614, 15ax-mp 5 . . . . . . . . . . 11 dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓
17 uzid 11886 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
1817ad2antrl 766 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ (ℤ𝑘))
19 fdm 6204 . . . . . . . . . . . . 13 ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2019ad2antll 767 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2118, 20eleqtrrd 2834 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom (𝑓 ↾ (ℤ𝑘)))
2216, 21sseldi 3734 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom 𝑓)
2313, 22ffvelrnd 6515 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓𝑘) ∈ 𝑋)
24 eqid 2752 . . . . . . . . . . . . 13 (MetOpen‘𝐶) = (MetOpen‘𝐶)
25 eqid 2752 . . . . . . . . . . . . 13 (MetOpen‘𝐷) = (MetOpen‘𝐷)
26 equivcau.1 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (Met‘𝑋))
27 equivcau.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
28 equivcau.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
2924, 25, 26, 27, 2, 28metss2lem 22509 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
3029expr 644 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3130ralrimiva 3096 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3231ad3antrrr 768 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
33 simplr 809 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑟 ∈ ℝ+)
34 oveq1 6812 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
35 oveq1 6812 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐶)𝑟) = ((𝑓𝑘)(ball‘𝐶)𝑟))
3634, 35sseq12d 3767 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟)))
3736imbi2d 329 . . . . . . . . . 10 (𝑥 = (𝑓𝑘) → ((𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) ↔ (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3837rspcv 3437 . . . . . . . . 9 ((𝑓𝑘) ∈ 𝑋 → (∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3923, 32, 33, 38syl3c 66 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))
4010, 39fssd 6210 . . . . . . 7 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟))
4140expr 644 . . . . . 6 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4241reximdva 3147 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
439, 42syld 47 . . . 4 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4443ralrimdva 3099 . . 3 ((𝜑𝑓 ∈ (𝑋pm ℂ)) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4544ss2rabdv 3816 . 2 (𝜑 → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)} ⊆ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
46 metxmet 22332 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
47 caufval 23265 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
4827, 46, 473syl 18 . 2 (𝜑 → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
49 metxmet 22332 . . 3 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
50 caufval 23265 . . 3 (𝐶 ∈ (∞Met‘𝑋) → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5126, 49, 503syl 18 . 2 (𝜑 → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5245, 48, 513sstr4d 3781 1 (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1624  wcel 2131  wral 3042  wrex 3043  {crab 3046  wss 3707   class class class wbr 4796  dom cdm 5258  cres 5260  wf 6037  cfv 6041  (class class class)co 6805  pm cpm 8016  cc 10118   · cmul 10125  cle 10259   / cdiv 10868  cz 11561  cuz 11871  +crp 12017  ∞Metcxmt 19925  Metcme 19926  ballcbl 19927  MetOpencmopn 19930  Caucca 23243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-po 5179  df-so 5180  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-z 11562  df-uz 11872  df-rp 12018  df-xadd 12132  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-cau 23246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator