MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs4v Structured version   Visualization version   GIF version

Theorem equs4v 1928
Description: Version of equs4 2288 with a dv condition, which requires fewer axioms. (Contributed by BJ, 31-May-2019.)
Assertion
Ref Expression
equs4v (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem equs4v
StepHypRef Expression
1 ax6ev 1888 . 2 𝑥 𝑥 = 𝑦
2 exintr 1817 . 2 (∀𝑥(𝑥 = 𝑦𝜑) → (∃𝑥 𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑦𝜑)))
31, 2mpi 20 1 (∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1479  wex 1702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-6 1886
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1703
This theorem is referenced by:  equvelv  1961  bj-sb56  32614  bj-equs45fv  32727  bj-sb2v  32728
  Copyright terms: Public domain W3C validator