MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqwrds3 Structured version   Visualization version   GIF version

Theorem eqwrds3 13633
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021.)
Assertion
Ref Expression
eqwrds3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))

Proof of Theorem eqwrds3
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s3cl 13555 . . 3 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉)
2 eqwrd 13280 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ Word 𝑉) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
31, 2sylan2 491 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
4 s3len 13570 . . . . 5 (#‘⟨“𝐴𝐵𝐶”⟩) = 3
54eqeq2i 2638 . . . 4 ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3)
65a1i 11 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ↔ (#‘𝑊) = 3))
76anbi1d 740 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = (#‘⟨“𝐴𝐵𝐶”⟩) ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖))))
8 oveq2 6613 . . . . . 6 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = (0..^3))
9 fzo0to3tp 12492 . . . . . 6 (0..^3) = {0, 1, 2}
108, 9syl6eq 2676 . . . . 5 ((#‘𝑊) = 3 → (0..^(#‘𝑊)) = {0, 1, 2})
1110raleqdv 3138 . . . 4 ((#‘𝑊) = 3 → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)))
12 fveq2 6150 . . . . . . . 8 (𝑖 = 0 → (𝑊𝑖) = (𝑊‘0))
13 fveq2 6150 . . . . . . . 8 (𝑖 = 0 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘0))
1412, 13eqeq12d 2641 . . . . . . 7 (𝑖 = 0 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0)))
15 s3fv0 13567 . . . . . . . . 9 (𝐴𝑉 → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
16153ad2ant1 1080 . . . . . . . 8 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵𝐶”⟩‘0) = 𝐴)
1716eqeq2d 2636 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘0) = (⟨“𝐴𝐵𝐶”⟩‘0) ↔ (𝑊‘0) = 𝐴))
1814, 17sylan9bbr 736 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 0) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘0) = 𝐴))
19 fveq2 6150 . . . . . . . 8 (𝑖 = 1 → (𝑊𝑖) = (𝑊‘1))
20 fveq2 6150 . . . . . . . 8 (𝑖 = 1 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘1))
2119, 20eqeq12d 2641 . . . . . . 7 (𝑖 = 1 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1)))
22 s3fv1 13568 . . . . . . . . 9 (𝐵𝑉 → (⟨“𝐴𝐵𝐶”⟩‘1) = 𝐵)
2322eqeq2d 2636 . . . . . . . 8 (𝐵𝑉 → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
24233ad2ant2 1081 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘1) = (⟨“𝐴𝐵𝐶”⟩‘1) ↔ (𝑊‘1) = 𝐵))
2521, 24sylan9bbr 736 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 1) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘1) = 𝐵))
26 fveq2 6150 . . . . . . . 8 (𝑖 = 2 → (𝑊𝑖) = (𝑊‘2))
27 fveq2 6150 . . . . . . . 8 (𝑖 = 2 → (⟨“𝐴𝐵𝐶”⟩‘𝑖) = (⟨“𝐴𝐵𝐶”⟩‘2))
2826, 27eqeq12d 2641 . . . . . . 7 (𝑖 = 2 → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2)))
29 s3fv2 13569 . . . . . . . . 9 (𝐶𝑉 → (⟨“𝐴𝐵𝐶”⟩‘2) = 𝐶)
3029eqeq2d 2636 . . . . . . . 8 (𝐶𝑉 → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
31303ad2ant3 1082 . . . . . . 7 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝑊‘2) = (⟨“𝐴𝐵𝐶”⟩‘2) ↔ (𝑊‘2) = 𝐶))
3228, 31sylan9bbr 736 . . . . . 6 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ 𝑖 = 2) → ((𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ (𝑊‘2) = 𝐶))
33 0zd 11334 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 0 ∈ ℤ)
34 1zzd 11353 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 1 ∈ ℤ)
35 2z 11354 . . . . . . 7 2 ∈ ℤ
3635a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉𝐶𝑉) → 2 ∈ ℤ)
3718, 25, 32, 33, 34, 36raltpd 4290 . . . . 5 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3837adantl 482 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (∀𝑖 ∈ {0, 1, 2} (𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
3911, 38sylan9bbr 736 . . 3 (((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (#‘𝑊) = 3) → (∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖) ↔ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶)))
4039pm5.32da 672 . 2 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (((#‘𝑊) = 3 ∧ ∀𝑖 ∈ (0..^(#‘𝑊))(𝑊𝑖) = (⟨“𝐴𝐵𝐶”⟩‘𝑖)) ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
413, 7, 403bitrd 294 1 ((𝑊 ∈ Word 𝑉 ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (𝑊 = ⟨“𝐴𝐵𝐶”⟩ ↔ ((#‘𝑊) = 3 ∧ ((𝑊‘0) = 𝐴 ∧ (𝑊‘1) = 𝐵 ∧ (𝑊‘2) = 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wral 2912  {ctp 4157  cfv 5850  (class class class)co 6605  0cc0 9881  1c1 9882  2c2 11015  3c3 11016  cz 11322  ..^cfzo 12403  #chash 13054  Word cword 13225  ⟨“cs3 13519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-fzo 12404  df-hash 13055  df-word 13233  df-concat 13235  df-s1 13236  df-s2 13525  df-s3 13526
This theorem is referenced by:  wrdl3s3  13634  s3sndisj  13635  s3iunsndisj  13636  elwwlks2ons3  26711  umgrwwlks2on  26713  elwwlks2  26722  elwspths2spth  26723
  Copyright terms: Public domain W3C validator