![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erbr3b | Structured version Visualization version GIF version |
Description: Biconditional for equivalent elements. (Contributed by Thierry Arnoux, 6-Jan-2020.) |
Ref | Expression |
---|---|
erbr3b | ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 805 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝑅 Er 𝑋) | |
2 | simplr 807 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐵) | |
3 | simpr 476 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐴𝑅𝐶) | |
4 | 1, 2, 3 | ertr3d 7805 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) |
5 | simpll 805 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝑅 Er 𝑋) | |
6 | simplr 807 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐵) | |
7 | simpr 476 | . . 3 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
8 | 5, 6, 7 | ertrd 7803 | . 2 ⊢ (((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
9 | 4, 8 | impbida 895 | 1 ⊢ ((𝑅 Er 𝑋 ∧ 𝐴𝑅𝐵) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 class class class wbr 4685 Er wer 7784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-er 7787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |