MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercgrg Structured version   Visualization version   GIF version

Theorem ercgrg 25457
Description: The shape congruence relation is an equivalence relation. Statement 4.4 of [Schwabhauser] p. 35. (Contributed by Thierry Arnoux, 9-Apr-2019.)
Hypothesis
Ref Expression
ercgrg.p 𝑃 = (Base‘𝐺)
Assertion
Ref Expression
ercgrg (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))

Proof of Theorem ercgrg
Dummy variables 𝑎 𝑏 𝑔 𝑖 𝑗 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cgrg 25451 . . . 4 cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
21relmptopab 6925 . . 3 Rel (cgrG‘𝐺)
32a1i 11 . 2 (𝐺 ∈ TarskiG → Rel (cgrG‘𝐺))
4 ercgrg.p . . . . . . 7 𝑃 = (Base‘𝐺)
5 eqid 2651 . . . . . . 7 (dist‘𝐺) = (dist‘𝐺)
6 eqid 2651 . . . . . . 7 (cgrG‘𝐺) = (cgrG‘𝐺)
74, 5, 6iscgrg 25452 . . . . . 6 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑦 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))))
87biimpa 500 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
98simpld 474 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)))
109ancomd 466 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
118simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
1211simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑥 = dom 𝑦)
1312eqcomd 2657 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → dom 𝑦 = dom 𝑥)
14 simpl 472 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → (𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦))
15 simprl 809 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑦)
1612adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → dom 𝑥 = dom 𝑦)
1715, 16eleqtrrd 2733 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑖 ∈ dom 𝑥)
18 simprr 811 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑦)
1918, 16eleqtrrd 2733 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → 𝑗 ∈ dom 𝑥)
2011simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2120r19.21bi 2961 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2221r19.21bi 2961 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2314, 17, 19, 22syl21anc 1365 . . . . . 6 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
2423eqcomd 2657 . . . . 5 (((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) ∧ (𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2524ralrimivva 3000 . . . 4 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
2613, 25jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))
274, 5, 6iscgrg 25452 . . . 4 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2827adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → (𝑦(cgrG‘𝐺)𝑥 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
2910, 26, 28mpbir2and 977 . 2 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑦(cgrG‘𝐺)𝑥)
309simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ 𝑥(cgrG‘𝐺)𝑦) → 𝑥 ∈ (𝑃pm ℝ))
3130adantrr 753 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥 ∈ (𝑃pm ℝ))
324, 5, 6iscgrg 25452 . . . . . . . 8 (𝐺 ∈ TarskiG → (𝑦(cgrG‘𝐺)𝑧 ↔ ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
3332biimpa 500 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ 𝑦(cgrG‘𝐺)𝑧) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3433adantrl 752 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))))
3534simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑦 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
3635simprd 478 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑧 ∈ (𝑃pm ℝ))
3731, 36jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)))
388adantrr 753 . . . . . . 7 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑦 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))))
3938simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑦 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗))))
4039simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑦)
4134simprd 478 . . . . . 6 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑦 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
4241simpld 474 . . . . 5 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑦 = dom 𝑧)
4340, 42eqtrd 2685 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → dom 𝑥 = dom 𝑧)
4439simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4544r19.21bi 2961 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) → ∀𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4645r19.21bi 2961 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑥) ∧ 𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
4746anasss 680 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)))
48 simpl 472 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → (𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)))
49 simprl 809 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑥)
5040adantr 480 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → dom 𝑥 = dom 𝑦)
5149, 50eleqtrd 2732 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑖 ∈ dom 𝑦)
52 simprr 811 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑥)
5352, 50eleqtrd 2732 . . . . . . 7 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → 𝑗 ∈ dom 𝑦)
5441simprd 478 . . . . . . . . 9 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑦𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5554r19.21bi 2961 . . . . . . . 8 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) → ∀𝑗 ∈ dom 𝑦((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5655r19.21bi 2961 . . . . . . 7 ((((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ 𝑖 ∈ dom 𝑦) ∧ 𝑗 ∈ dom 𝑦) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5748, 51, 53, 56syl21anc 1365 . . . . . 6 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑦𝑖)(dist‘𝐺)(𝑦𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5847, 57eqtrd 2685 . . . . 5 (((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) ∧ (𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥)) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
5958ralrimivva 3000 . . . 4 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗)))
6043, 59jca 553 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))
614, 5, 6iscgrg 25452 . . . 4 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6261adantr 480 . . 3 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → (𝑥(cgrG‘𝐺)𝑧 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑧 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑧 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑧𝑖)(dist‘𝐺)(𝑧𝑗))))))
6337, 60, 62mpbir2and 977 . 2 ((𝐺 ∈ TarskiG ∧ (𝑥(cgrG‘𝐺)𝑦𝑦(cgrG‘𝐺)𝑧)) → 𝑥(cgrG‘𝐺)𝑧)
644, 5, 6iscgrg 25452 . . 3 (𝐺 ∈ TarskiG → (𝑥(cgrG‘𝐺)𝑥 ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))))))
65 pm4.24 676 . . . 4 (𝑥 ∈ (𝑃pm ℝ) ↔ (𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)))
66 eqid 2651 . . . . . 6 dom 𝑥 = dom 𝑥
67 eqidd 2652 . . . . . . 7 ((𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥) → ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
6867rgen2a 3006 . . . . . 6 𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗))
6966, 68pm3.2i 470 . . . . 5 (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))
7069biantru 525 . . . 4 ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7165, 70bitri 264 . . 3 (𝑥 ∈ (𝑃pm ℝ) ↔ ((𝑥 ∈ (𝑃pm ℝ) ∧ 𝑥 ∈ (𝑃pm ℝ)) ∧ (dom 𝑥 = dom 𝑥 ∧ ∀𝑖 ∈ dom 𝑥𝑗 ∈ dom 𝑥((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)) = ((𝑥𝑖)(dist‘𝐺)(𝑥𝑗)))))
7264, 71syl6rbbr 279 . 2 (𝐺 ∈ TarskiG → (𝑥 ∈ (𝑃pm ℝ) ↔ 𝑥(cgrG‘𝐺)𝑥))
733, 29, 63, 72iserd 7813 1 (𝐺 ∈ TarskiG → (cgrG‘𝐺) Er (𝑃pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231   class class class wbr 4685  dom cdm 5143  Rel wrel 5148  cfv 5926  (class class class)co 6690   Er wer 7784  pm cpm 7900  cr 9973  Basecbs 15904  distcds 15997  TarskiGcstrkg 25374  cgrGccgrg 25450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-er 7787  df-cgrg 25451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator