MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkntr Structured version   Visualization version   GIF version

Theorem erclwwlkntr 27852
Description: is a transitive relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlkn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlkn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkntr ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊   𝑧,𝑛,𝑡,𝑢,𝑦,𝑥
Allowed substitution hints:   (𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑧,𝑢,𝑡,𝑛)   𝑁(𝑦,𝑧)   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem erclwwlkntr
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3499 . 2 𝑥 ∈ V
2 vex 3499 . 2 𝑦 ∈ V
3 vex 3499 . 2 𝑧 ∈ V
4 erclwwlkn.w . . . . . 6 𝑊 = (𝑁 ClWWalksN 𝐺)
5 erclwwlkn.r . . . . . 6 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
64, 5erclwwlkneqlen 27849 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
763adant3 1128 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (♯‘𝑥) = (♯‘𝑦)))
84, 5erclwwlkneqlen 27849 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
983adant1 1126 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → (♯‘𝑦) = (♯‘𝑧)))
104, 5erclwwlkneq 27848 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
11103adant1 1126 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 ↔ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))))
124, 5erclwwlkneq 27848 . . . . . . . . . 10 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
13123adant3 1128 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
14 simpr1 1190 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑥𝑊)
15 simplr2 1212 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → 𝑧𝑊)
16 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → (𝑦 cyclShift 𝑛) = (𝑦 cyclShift 𝑚))
1716eqeq2d 2834 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (𝑥 = (𝑦 cyclShift 𝑛) ↔ 𝑥 = (𝑦 cyclShift 𝑚)))
1817cbvrexvw 3452 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚))
19 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → (𝑧 cyclShift 𝑛) = (𝑧 cyclShift 𝑘))
2019eqeq2d 2834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑦 = (𝑧 cyclShift 𝑛) ↔ 𝑦 = (𝑧 cyclShift 𝑘)))
2120cbvrexvw 3452 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) ↔ ∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘))
22 eqid 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (Vtx‘𝐺) = (Vtx‘𝐺)
2322clwwlknbp 27815 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → (𝑧 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑧) = 𝑁))
24 eqcom 2830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((♯‘𝑧) = 𝑁𝑁 = (♯‘𝑧))
2524biimpi 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((♯‘𝑧) = 𝑁𝑁 = (♯‘𝑧))
2623, 25simpl2im 506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (♯‘𝑧))
2726, 4eleq2s 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧𝑊𝑁 = (♯‘𝑧))
2827ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑁 = (♯‘𝑧))
2923simpld 497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 ∈ (𝑁 ClWWalksN 𝐺) → 𝑧 ∈ Word (Vtx‘𝐺))
3029, 4eleq2s 2933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑧𝑊𝑧 ∈ Word (Vtx‘𝐺))
3130ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → 𝑧 ∈ Word (Vtx‘𝐺))
3231adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → 𝑧 ∈ Word (Vtx‘𝐺))
33 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))
3432, 33cshwcsh2id 14192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
35 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑁 = (♯‘𝑧) → (0...𝑁) = (0...(♯‘𝑧)))
36 oveq2 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((♯‘𝑧) = (♯‘𝑦) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3736eqcoms 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((♯‘𝑦) = (♯‘𝑧) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3837adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
3938adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (0...(♯‘𝑧)) = (0...(♯‘𝑦)))
4035, 39sylan9eq 2878 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (0...𝑁) = (0...(♯‘𝑦)))
4140eleq2d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (𝑚 ∈ (0...𝑁) ↔ 𝑚 ∈ (0...(♯‘𝑦))))
4241anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ↔ (𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚))))
4335eleq2d 2900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑁 = (♯‘𝑧) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...(♯‘𝑧))))
4443anbi1d 631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑁 = (♯‘𝑧) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4544adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → ((𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘)) ↔ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘))))
4642, 45anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) ↔ ((𝑚 ∈ (0...(♯‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...(♯‘𝑧)) ∧ 𝑦 = (𝑧 cyclShift 𝑘)))))
4735rexeqdv 3418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑁 = (♯‘𝑧) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4847adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛) ↔ ∃𝑛 ∈ (0...(♯‘𝑧))𝑥 = (𝑧 cyclShift 𝑛)))
4934, 46, 483imtr4d 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑁 = (♯‘𝑧) ∧ (((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5028, 49mpancom 686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (((𝑚 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑦 = (𝑧 cyclShift 𝑘))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5150exp5l 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (𝑚 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑚) → (𝑘 ∈ (0...𝑁) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5251imp41 428 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) ∧ 𝑘 ∈ (0...𝑁)) → (𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5352rexlimdva 3286 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑥 = (𝑦 cyclShift 𝑚)) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
5453ex 415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) ∧ 𝑚 ∈ (0...𝑁)) → (𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5554rexlimdva 3286 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑘 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑘) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5621, 55syl7bi 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑚) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5718, 56syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑥𝑊𝑦𝑊) ∧ 𝑧𝑊) ∧ ((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
5857exp31 422 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥𝑊𝑦𝑊) → (𝑧𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
5958com15 101 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛) → (𝑧𝑊 → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))))
6059impcom 410 . . . . . . . . . . . . . . . . . . . 20 ((𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
61603adant1 1126 . . . . . . . . . . . . . . . . . . 19 ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))))
6261impcom 410 . . . . . . . . . . . . . . . . . 18 ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((𝑥𝑊𝑦𝑊) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6362com13 88 . . . . . . . . . . . . . . . . 17 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
64633impia 1113 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
6564impcom 410 . . . . . . . . . . . . . . 15 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))
6614, 15, 653jca 1124 . . . . . . . . . . . . . 14 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛)))
674, 5erclwwlkneq 27848 . . . . . . . . . . . . . . 15 ((𝑥 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
68673adant2 1127 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑧 ↔ (𝑥𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑧 cyclShift 𝑛))))
6966, 68syl5ibrcom 249 . . . . . . . . . . . . 13 (((((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) ∧ (𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛))) ∧ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))
7069exp31 422 . . . . . . . . . . . 12 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → 𝑥 𝑧))))
7170com24 95 . . . . . . . . . . 11 (((♯‘𝑦) = (♯‘𝑧) ∧ (♯‘𝑥) = (♯‘𝑦)) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧))))
7271ex 415 . . . . . . . . . 10 ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7372com4t 93 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7413, 73sylbid 242 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → 𝑥 𝑧)))))
7574com25 99 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑦𝑊𝑧𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑧 cyclShift 𝑛)) → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
7611, 75sylbid 242 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑦) = (♯‘𝑧) → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧)))))
779, 76mpdd 43 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑦 𝑧 → ((♯‘𝑥) = (♯‘𝑦) → (𝑥 𝑦𝑥 𝑧))))
7877com24 95 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → ((♯‘𝑥) = (♯‘𝑦) → (𝑦 𝑧𝑥 𝑧))))
797, 78mpdd 43 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → (𝑥 𝑦 → (𝑦 𝑧𝑥 𝑧)))
8079impd 413 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
811, 2, 3, 80mp3an 1457 1 ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496   class class class wbr 5068  {copab 5130  cfv 6357  (class class class)co 7158  0cc0 10539  ...cfz 12895  chash 13693  Word cword 13864   cyclShift ccsh 14152  Vtxcvtx 26783   ClWWalksN cclwwlkn 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-hash 13694  df-word 13865  df-concat 13925  df-substr 14005  df-pfx 14035  df-csh 14153  df-clwwlk 27762  df-clwwlkn 27805
This theorem is referenced by:  erclwwlkn  27853
  Copyright terms: Public domain W3C validator