Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlksnsym Structured version   Visualization version   GIF version

Theorem erclwwlksnsym 26807
 Description: ∼ is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 10-Apr-2018.) (Revised by AV, 30-Apr-2021.)
Hypotheses
Ref Expression
erclwwlksn.w 𝑊 = (𝑁 ClWWalksN 𝐺)
erclwwlksn.r = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlksnsym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑡,𝑊,𝑢   𝑛,𝑁,𝑢,𝑡,𝑥   𝑦,𝑛,𝑡,𝑢,𝑥   𝑛,𝑊
Allowed substitution hints:   (𝑥,𝑦,𝑢,𝑡,𝑛)   𝐺(𝑥,𝑦,𝑢,𝑡,𝑛)   𝑁(𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem erclwwlksnsym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3194 . 2 𝑥 ∈ V
2 vex 3194 . 2 𝑦 ∈ V
3 erclwwlksn.w . . . 4 𝑊 = (𝑁 ClWWalksN 𝐺)
4 erclwwlksn.r . . . 4 = {⟨𝑡, 𝑢⟩ ∣ (𝑡𝑊𝑢𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑡 = (𝑢 cyclShift 𝑛))}
53, 4erclwwlksneqlen 26805 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (#‘𝑥) = (#‘𝑦)))
63, 4erclwwlksneq 26804 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛))))
7 simpl2 1063 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦𝑊)
8 simpl1 1062 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑥𝑊)
9 eqid 2626 . . . . . . . . . . . . . . . . . . . 20 (Vtx‘𝐺) = (Vtx‘𝐺)
109clwwlknbp 26746 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → (𝑥 ∈ Word (Vtx‘𝐺) ∧ (#‘𝑥) = 𝑁))
11 eqcom 2633 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑥) = 𝑁𝑁 = (#‘𝑥))
1211biimpi 206 . . . . . . . . . . . . . . . . . . 19 ((#‘𝑥) = 𝑁𝑁 = (#‘𝑥))
1310, 12simpl2im 657 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑁 ClWWalksN 𝐺) → 𝑁 = (#‘𝑥))
1413, 3eleq2s 2722 . . . . . . . . . . . . . . . . 17 (𝑥𝑊𝑁 = (#‘𝑥))
1514adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥𝑊𝑦𝑊) → 𝑁 = (#‘𝑥))
1615adantr 481 . . . . . . . . . . . . . . 15 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑁 = (#‘𝑥))
179clwwlksnwrd 26747 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1817, 3eleq2s 2722 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑊𝑦 ∈ Word (Vtx‘𝐺))
1918adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑊𝑦𝑊) → 𝑦 ∈ Word (Vtx‘𝐺))
2019adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
2120adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → 𝑦 ∈ Word (Vtx‘𝐺))
22 simprr 795 . . . . . . . . . . . . . . . . 17 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → (#‘𝑥) = (#‘𝑦))
2321, 22cshwcshid 13505 . . . . . . . . . . . . . . . 16 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → ((𝑛 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
24 oveq2 6613 . . . . . . . . . . . . . . . . . . 19 (𝑁 = (#‘𝑥) → (0...𝑁) = (0...(#‘𝑥)))
25 oveq2 6613 . . . . . . . . . . . . . . . . . . . 20 ((#‘𝑥) = (#‘𝑦) → (0...(#‘𝑥)) = (0...(#‘𝑦)))
2625adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → (0...(#‘𝑥)) = (0...(#‘𝑦)))
2724, 26sylan9eq 2680 . . . . . . . . . . . . . . . . . 18 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → (0...𝑁) = (0...(#‘𝑦)))
2827eleq2d 2689 . . . . . . . . . . . . . . . . 17 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → (𝑛 ∈ (0...𝑁) ↔ 𝑛 ∈ (0...(#‘𝑦))))
2928anbi1d 740 . . . . . . . . . . . . . . . 16 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) ↔ (𝑛 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛))))
3024adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → (0...𝑁) = (0...(#‘𝑥)))
3130rexeqdv 3139 . . . . . . . . . . . . . . . 16 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → (∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚) ↔ ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
3223, 29, 313imtr4d 283 . . . . . . . . . . . . . . 15 ((𝑁 = (#‘𝑥) ∧ ((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦))) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3316, 32mpancom 702 . . . . . . . . . . . . . 14 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑛 ∈ (0...𝑁) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3433expd 452 . . . . . . . . . . . . 13 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑛 ∈ (0...𝑁) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3534rexlimdv 3028 . . . . . . . . . . . 12 (((𝑥𝑊𝑦𝑊) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3635ex 450 . . . . . . . . . . 11 ((𝑥𝑊𝑦𝑊) → ((#‘𝑥) = (#‘𝑦) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
3736com23 86 . . . . . . . . . 10 ((𝑥𝑊𝑦𝑊) → (∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))))
38373impia 1258 . . . . . . . . 9 ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚)))
3938imp 445 . . . . . . . 8 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
40 oveq2 6613 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
4140eqeq2d 2636 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
4241cbvrexv 3165 . . . . . . . 8 (∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑚))
4339, 42sylibr 224 . . . . . . 7 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))
447, 8, 433jca 1240 . . . . . 6 (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛)))
453, 4erclwwlksneq 26804 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4645ancoms 469 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦𝑊𝑥𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑦 = (𝑥 cyclShift 𝑛))))
4744, 46syl5ibr 236 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 𝑥))
4847expd 452 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥𝑊𝑦𝑊 ∧ ∃𝑛 ∈ (0...𝑁)𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
496, 48sylbid 230 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
505, 49mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
511, 2, 50mp2an 707 1 (𝑥 𝑦𝑦 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  ∃wrex 2913  Vcvv 3191   class class class wbr 4618  {copab 4677  ‘cfv 5850  (class class class)co 6605  0cc0 9881  ...cfz 12265  #chash 13054  Word cword 13225   cyclShift ccsh 13466  Vtxcvtx 25769   ClWWalksN cclwwlksn 26737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-sup 8293  df-inf 8294  df-card 8710  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fzo 12404  df-fl 12530  df-mod 12606  df-hash 13055  df-word 13233  df-concat 13235  df-substr 13237  df-csh 13467  df-clwwlks 26738  df-clwwlksn 26739 This theorem is referenced by:  erclwwlksn  26809  eclclwwlksn1  26812
 Copyright terms: Public domain W3C validator