Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  erclwwlkssym Structured version   Visualization version   GIF version

Theorem erclwwlkssym 26801
 Description: ∼ is a symmetric relation over the set of closed walks (defined as words). (Contributed by Alexander van der Vekens, 8-Apr-2018.) (Revised by AV, 29-Apr-2021.)
Hypothesis
Ref Expression
erclwwlks.r = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
Assertion
Ref Expression
erclwwlkssym (𝑥 𝑦𝑦 𝑥)
Distinct variable groups:   𝑛,𝐺,𝑢,𝑤   𝑥,𝑛,𝑢,𝑤,𝑦
Allowed substitution hints:   (𝑥,𝑦,𝑤,𝑢,𝑛)   𝐺(𝑥,𝑦)

Proof of Theorem erclwwlkssym
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 vex 3189 . 2 𝑥 ∈ V
2 vex 3189 . 2 𝑦 ∈ V
3 erclwwlks.r . . . 4 = {⟨𝑢, 𝑤⟩ ∣ (𝑢 ∈ (ClWWalks‘𝐺) ∧ 𝑤 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑤))𝑢 = (𝑤 cyclShift 𝑛))}
43erclwwlkseqlen 26799 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → (#‘𝑥) = (#‘𝑦)))
53erclwwlkseq 26798 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 ↔ (𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛))))
6 simpl2 1063 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 ∈ (ClWWalks‘𝐺))
7 simpl1 1062 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑥 ∈ (ClWWalks‘𝐺))
8 eqid 2621 . . . . . . . . . . . . . . . . . 18 (Vtx‘𝐺) = (Vtx‘𝐺)
98clwwlkbp 26750 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (ClWWalks‘𝐺) → (𝐺 ∈ V ∧ 𝑦 ∈ Word (Vtx‘𝐺) ∧ 𝑦 ≠ ∅))
109simp2d 1072 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (ClWWalks‘𝐺) → 𝑦 ∈ Word (Vtx‘𝐺))
1110ad2antlr 762 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 ∈ Word (Vtx‘𝐺))
12 simpr 477 . . . . . . . . . . . . . . 15 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (#‘𝑥) = (#‘𝑦))
1311, 12cshwcshid 13510 . . . . . . . . . . . . . 14 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → ((𝑛 ∈ (0...(#‘𝑦)) ∧ 𝑥 = (𝑦 cyclShift 𝑛)) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1413expd 452 . . . . . . . . . . . . 13 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑛 ∈ (0...(#‘𝑦)) → (𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1514rexlimdv 3023 . . . . . . . . . . . 12 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) ∧ (#‘𝑥) = (#‘𝑦)) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1615ex 450 . . . . . . . . . . 11 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → ((#‘𝑥) = (#‘𝑦) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
1716com23 86 . . . . . . . . . 10 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺)) → (∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))))
18173impia 1258 . . . . . . . . 9 ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚)))
1918imp 445 . . . . . . . 8 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
20 oveq2 6612 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝑥 cyclShift 𝑛) = (𝑥 cyclShift 𝑚))
2120eqeq2d 2631 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑦 = (𝑥 cyclShift 𝑛) ↔ 𝑦 = (𝑥 cyclShift 𝑚)))
2221cbvrexv 3160 . . . . . . . 8 (∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛) ↔ ∃𝑚 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑚))
2319, 22sylibr 224 . . . . . . 7 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))
246, 7, 233jca 1240 . . . . . 6 (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛)))
253erclwwlkseq 26798 . . . . . . 7 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2625ancoms 469 . . . . . 6 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑦 𝑥 ↔ (𝑦 ∈ (ClWWalks‘𝐺) ∧ 𝑥 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑥))𝑦 = (𝑥 cyclShift 𝑛))))
2724, 26syl5ibr 236 . . . . 5 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) ∧ (#‘𝑥) = (#‘𝑦)) → 𝑦 𝑥))
2827expd 452 . . . 4 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ((𝑥 ∈ (ClWWalks‘𝐺) ∧ 𝑦 ∈ (ClWWalks‘𝐺) ∧ ∃𝑛 ∈ (0...(#‘𝑦))𝑥 = (𝑦 cyclShift 𝑛)) → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
295, 28sylbid 230 . . 3 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦 → ((#‘𝑥) = (#‘𝑦) → 𝑦 𝑥)))
304, 29mpdd 43 . 2 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 𝑦𝑦 𝑥))
311, 2, 30mp2an 707 1 (𝑥 𝑦𝑦 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  Vcvv 3186  ∅c0 3891   class class class wbr 4613  {copab 4672  ‘cfv 5847  (class class class)co 6604  0cc0 9880  ...cfz 12268  #chash 13057  Word cword 13230   cyclShift ccsh 13471  Vtxcvtx 25774  ClWWalkscclwwlks 26742 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609  df-hash 13058  df-word 13238  df-concat 13240  df-substr 13242  df-csh 13472  df-clwwlks 26744 This theorem is referenced by:  erclwwlks  26803
 Copyright terms: Public domain W3C validator