MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ercpbl Structured version   Visualization version   GIF version

Theorem ercpbl 16256
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉 ∈ V)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbl.c ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
ercpbl.e (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
Assertion
Ref Expression
ercpbl ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Distinct variable groups:   𝑥,   𝑎,𝑏,𝑥,𝐴   𝐵,𝑏,𝑥   𝑥,𝐶   𝑥,𝐷   𝑉,𝑎,𝑏,𝑥   + ,𝑎,𝑏,𝑥   𝜑,𝑎,𝑏,𝑥
Allowed substitution hints:   𝐵(𝑎)   𝐶(𝑎,𝑏)   𝐷(𝑎,𝑏)   (𝑎,𝑏)   𝐹(𝑥,𝑎,𝑏)

Proof of Theorem ercpbl
StepHypRef Expression
1 ercpbl.e . . 3 (𝜑 → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
213ad2ant1 1102 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐴 𝐶𝐵 𝐷) → (𝐴 + 𝐵) (𝐶 + 𝐷)))
3 ercpbl.r . . . . 5 (𝜑 Er 𝑉)
433ad2ant1 1102 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → Er 𝑉)
5 ercpbl.v . . . . 5 (𝜑𝑉 ∈ V)
653ad2ant1 1102 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝑉 ∈ V)
7 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
8 simp2l 1107 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐴𝑉)
94, 6, 7, 8ercpbllem 16255 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐴) = (𝐹𝐶) ↔ 𝐴 𝐶))
10 simp2r 1108 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → 𝐵𝑉)
114, 6, 7, 10ercpbllem 16255 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹𝐵) = (𝐹𝐷) ↔ 𝐵 𝐷))
129, 11anbi12d 747 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) ↔ (𝐴 𝐶𝐵 𝐷)))
13 ercpbl.c . . . . 5 ((𝜑 ∧ (𝑎𝑉𝑏𝑉)) → (𝑎 + 𝑏) ∈ 𝑉)
1413caovclg 6868 . . . 4 ((𝜑 ∧ (𝐴𝑉𝐵𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
15143adant3 1101 . . 3 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (𝐴 + 𝐵) ∈ 𝑉)
164, 6, 7, 15ercpbllem 16255 . 2 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → ((𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷)) ↔ (𝐴 + 𝐵) (𝐶 + 𝐷)))
172, 12, 163imtr4d 283 1 ((𝜑 ∧ (𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)) → (((𝐹𝐴) = (𝐹𝐶) ∧ (𝐹𝐵) = (𝐹𝐷)) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐶 + 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  Vcvv 3231   class class class wbr 4685  cmpt 4762  cfv 5926  (class class class)co 6690   Er wer 7784  [cec 7785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-er 7787  df-ec 7789
This theorem is referenced by:  qusaddvallem  16258  qusaddflem  16259  qusgrp2  17580  qusring2  18666
  Copyright terms: Public domain W3C validator