Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem1 Structured version   Visualization version   GIF version

Theorem erdsze2lem1 32445
Description: Lemma for erdsze2 32447. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (♯‘𝐴))
Assertion
Ref Expression
erdsze2lem1 (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
Distinct variable groups:   𝐴,𝑓   𝑓,𝐹   𝑅,𝑓   𝑆,𝑓   𝑓,𝑁   𝜑,𝑓

Proof of Theorem erdsze2lem1
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . . . . . 9 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . . . . . 11 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 11932 . . . . . . . . . . 11 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . . . . . 10 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 11932 . . . . . . . . . . 11 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 11954 . . . . . . . . 9 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8eqeltrid 2917 . . . . . . . 8 (𝜑𝑁 ∈ ℕ0)
10 peano2nn0 11931 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
11 hashfz1 13700 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ0 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
129, 10, 113syl 18 . . . . . . 7 (𝜑 → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
1312adantr 483 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
14 erdsze2lem.l . . . . . . . 8 (𝜑𝑁 < (♯‘𝐴))
1514adantr 483 . . . . . . 7 ((𝜑𝐴 ∈ Fin) → 𝑁 < (♯‘𝐴))
16 hashcl 13711 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
17 nn0ltp1le 12034 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) ≤ (♯‘𝐴)))
189, 16, 17syl2an 597 . . . . . . 7 ((𝜑𝐴 ∈ Fin) → (𝑁 < (♯‘𝐴) ↔ (𝑁 + 1) ≤ (♯‘𝐴)))
1915, 18mpbid 234 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (𝑁 + 1) ≤ (♯‘𝐴))
2013, 19eqbrtrd 5081 . . . . 5 ((𝜑𝐴 ∈ Fin) → (♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴))
21 fzfid 13335 . . . . . 6 ((𝜑𝐴 ∈ Fin) → (1...(𝑁 + 1)) ∈ Fin)
22 simpr 487 . . . . . 6 ((𝜑𝐴 ∈ Fin) → 𝐴 ∈ Fin)
23 hashdom 13734 . . . . . 6 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝐴 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴) ↔ (1...(𝑁 + 1)) ≼ 𝐴))
2421, 22, 23syl2anc 586 . . . . 5 ((𝜑𝐴 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) ≤ (♯‘𝐴) ↔ (1...(𝑁 + 1)) ≼ 𝐴))
2520, 24mpbid 234 . . . 4 ((𝜑𝐴 ∈ Fin) → (1...(𝑁 + 1)) ≼ 𝐴)
26 simpr 487 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ¬ 𝐴 ∈ Fin)
27 fzfid 13335 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → (1...(𝑁 + 1)) ∈ Fin)
28 isinffi 9415 . . . . . 6 ((¬ 𝐴 ∈ Fin ∧ (1...(𝑁 + 1)) ∈ Fin) → ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴)
2926, 27, 28syl2anc 586 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴)
30 erdsze2.a . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
31 reex 10622 . . . . . . . 8 ℝ ∈ V
32 ssexg 5220 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
3330, 31, 32sylancl 588 . . . . . . 7 (𝜑𝐴 ∈ V)
3433adantr 483 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ∈ V)
35 brdomg 8513 . . . . . 6 (𝐴 ∈ V → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴))
3634, 35syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑓 𝑓:(1...(𝑁 + 1))–1-1𝐴))
3729, 36mpbird 259 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ Fin) → (1...(𝑁 + 1)) ≼ 𝐴)
3825, 37pm2.61dan 811 . . 3 (𝜑 → (1...(𝑁 + 1)) ≼ 𝐴)
39 domeng 8517 . . . 4 (𝐴 ∈ V → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)))
4033, 39syl 17 . . 3 (𝜑 → ((1...(𝑁 + 1)) ≼ 𝐴 ↔ ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)))
4138, 40mpbid 234 . 2 (𝜑 → ∃𝑠((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴))
42 simprr 771 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠𝐴)
4330adantr 483 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝐴 ⊆ ℝ)
4442, 43sstrd 3977 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠 ⊆ ℝ)
45 ltso 10715 . . . . 5 < Or ℝ
46 soss 5488 . . . . 5 (𝑠 ⊆ ℝ → ( < Or ℝ → < Or 𝑠))
4744, 45, 46mpisyl 21 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → < Or 𝑠)
48 fzfid 13335 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (1...(𝑁 + 1)) ∈ Fin)
49 simprl 769 . . . . . 6 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (1...(𝑁 + 1)) ≈ 𝑠)
50 enfi 8728 . . . . . 6 ((1...(𝑁 + 1)) ≈ 𝑠 → ((1...(𝑁 + 1)) ∈ Fin ↔ 𝑠 ∈ Fin))
5149, 50syl 17 . . . . 5 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ((1...(𝑁 + 1)) ∈ Fin ↔ 𝑠 ∈ Fin))
5248, 51mpbid 234 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → 𝑠 ∈ Fin)
53 fz1iso 13814 . . . 4 (( < Or 𝑠𝑠 ∈ Fin) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
5447, 52, 53syl2anc 586 . . 3 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
55 isof1o 7070 . . . . . . . . . 10 (𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → 𝑓:(1...(♯‘𝑠))–1-1-onto𝑠)
5655adantl 484 . . . . . . . . 9 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(♯‘𝑠))–1-1-onto𝑠)
57 hashen 13701 . . . . . . . . . . . . . . 15 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑠 ∈ Fin) → ((♯‘(1...(𝑁 + 1))) = (♯‘𝑠) ↔ (1...(𝑁 + 1)) ≈ 𝑠))
5848, 52, 57syl2anc 586 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ((♯‘(1...(𝑁 + 1))) = (♯‘𝑠) ↔ (1...(𝑁 + 1)) ≈ 𝑠))
5949, 58mpbird 259 . . . . . . . . . . . . 13 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘(1...(𝑁 + 1))) = (♯‘𝑠))
6012adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘(1...(𝑁 + 1))) = (𝑁 + 1))
6159, 60eqtr3d 2858 . . . . . . . . . . . 12 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (♯‘𝑠) = (𝑁 + 1))
6261adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (♯‘𝑠) = (𝑁 + 1))
6362oveq2d 7166 . . . . . . . . . 10 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (1...(♯‘𝑠)) = (1...(𝑁 + 1)))
6463f1oeq2d 6606 . . . . . . . . 9 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓:(1...(♯‘𝑠))–1-1-onto𝑠𝑓:(1...(𝑁 + 1))–1-1-onto𝑠))
6556, 64mpbid 234 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1-onto𝑠)
66 f1of1 6609 . . . . . . . 8 (𝑓:(1...(𝑁 + 1))–1-1-onto𝑠𝑓:(1...(𝑁 + 1))–1-1𝑠)
6765, 66syl 17 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1𝑠)
68 simplrr 776 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑠𝐴)
69 f1ss 6575 . . . . . . 7 ((𝑓:(1...(𝑁 + 1))–1-1𝑠𝑠𝐴) → 𝑓:(1...(𝑁 + 1))–1-1𝐴)
7067, 68, 69syl2anc 586 . . . . . 6 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓:(1...(𝑁 + 1))–1-1𝐴)
71 simpr 487 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠))
72 f1ofo 6617 . . . . . . . . 9 (𝑓:(1...(♯‘𝑠))–1-1-onto𝑠𝑓:(1...(♯‘𝑠))–onto𝑠)
73 forn 6588 . . . . . . . . 9 (𝑓:(1...(♯‘𝑠))–onto𝑠 → ran 𝑓 = 𝑠)
74 isoeq5 7068 . . . . . . . . 9 (ran 𝑓 = 𝑠 → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)))
7556, 72, 73, 744syl 19 . . . . . . . 8 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)))
7671, 75mpbird 259 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓))
77 isoeq4 7067 . . . . . . . 8 ((1...(♯‘𝑠)) = (1...(𝑁 + 1)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
7863, 77syl 17 . . . . . . 7 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), ran 𝑓) ↔ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
7976, 78mpbid 234 . . . . . 6 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))
8070, 79jca 514 . . . . 5 (((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) ∧ 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠)) → (𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
8180ex 415 . . . 4 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → (𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))))
8281eximdv 1914 . . 3 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → (∃𝑓 𝑓 Isom < , < ((1...(♯‘𝑠)), 𝑠) → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))))
8354, 82mpd 15 . 2 ((𝜑 ∧ ((1...(𝑁 + 1)) ≈ 𝑠𝑠𝐴)) → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
8441, 83exlimddv 1932 1 (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1𝐴𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  Vcvv 3495  wss 3936   class class class wbr 5059   Or wor 5468  ran crn 5551  1-1wf1 6347  ontowfo 6348  1-1-ontowf1o 6349  cfv 6350   Isom wiso 6351  (class class class)co 7150  cen 8500  cdom 8501  Fincfn 8503  cr 10530  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11891  ...cfz 12886  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-xnn0 11962  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  erdsze2  32447
  Copyright terms: Public domain W3C validator