Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   GIF version

Theorem erdszelem7 30884
Description: Lemma for erdsze 30889. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((# “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem7.r (𝜑𝑅 ∈ ℕ)
erdszelem7.m (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
Assertion
Ref Expression
erdszelem7 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Distinct variable groups:   𝑥,𝑦,𝑠,𝐹   𝐾,𝑠   𝐴,𝑠,𝑥,𝑦   𝑂,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑁,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 13065 . . . 4 #:V⟶(ℕ0 ∪ {+∞})
2 ffun 6005 . . . 4 (#:V⟶(ℕ0 ∪ {+∞}) → Fun #)
31, 2ax-mp 5 . . 3 Fun #
4 erdszelem.a . . . 4 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . 5 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . 5 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . 5 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((# “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . 5 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 30882 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 701 . . 3 (𝜑 → (𝐾𝐴) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6205 . . 3 ((Fun # ∧ (𝐾𝐴) ∈ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (#‘𝑠) = (𝐾𝐴))
123, 10, 11sylancr 694 . 2 (𝜑 → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (#‘𝑠) = (𝐾𝐴))
13 eqid 2621 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 30878 . . . . 5 (𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠))
15 simprl1 1104 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝐴))
16 elfzuz3 12281 . . . . . . . . . . 11 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
17 fzss2 12323 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
184, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
1918adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → (1...𝐴) ⊆ (1...𝑁))
2015, 19sstrd 3593 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝑁))
21 selpw 4137 . . . . . . . 8 (𝑠 ∈ 𝒫 (1...𝑁) ↔ 𝑠 ⊆ (1...𝑁))
2220, 21sylibr 224 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → 𝑠 ∈ 𝒫 (1...𝑁))
23 erdszelem7.m . . . . . . . . . . 11 (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
245, 6, 7, 8erdszelem6 30883 . . . . . . . . . . . . . . 15 (𝜑𝐾:(1...𝑁)⟶ℕ)
2524, 4ffvelrnd 6316 . . . . . . . . . . . . . 14 (𝜑 → (𝐾𝐴) ∈ ℕ)
26 nnuz 11667 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2725, 26syl6eleq 2708 . . . . . . . . . . . . 13 (𝜑 → (𝐾𝐴) ∈ (ℤ‘1))
28 erdszelem7.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
29 nnz 11343 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ → 𝑅 ∈ ℤ)
30 peano2zm 11364 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (𝑅 − 1) ∈ ℤ)
3128, 29, 303syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑅 − 1) ∈ ℤ)
32 elfz5 12276 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ (ℤ‘1) ∧ (𝑅 − 1) ∈ ℤ) → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3327, 31, 32syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
34 nnltlem1 11388 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ ℕ ∧ 𝑅 ∈ ℕ) → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3525, 28, 34syl2anc 692 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3633, 35bitr4d 271 . . . . . . . . . . 11 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) < 𝑅))
3723, 36mtbid 314 . . . . . . . . . 10 (𝜑 → ¬ (𝐾𝐴) < 𝑅)
3828nnred 10979 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
3913erdszelem2 30879 . . . . . . . . . . . . . 14 ((# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ∈ Fin ∧ (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ)
4039simpri 478 . . . . . . . . . . . . 13 (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ
41 nnssre 10968 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
4240, 41sstri 3592 . . . . . . . . . . . 12 (# “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℝ
4342, 10sseldi 3581 . . . . . . . . . . 11 (𝜑 → (𝐾𝐴) ∈ ℝ)
4438, 43lenltd 10127 . . . . . . . . . 10 (𝜑 → (𝑅 ≤ (𝐾𝐴) ↔ ¬ (𝐾𝐴) < 𝑅))
4537, 44mpbird 247 . . . . . . . . 9 (𝜑𝑅 ≤ (𝐾𝐴))
4645adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (𝐾𝐴))
47 simprr 795 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → (#‘𝑠) = (𝐾𝐴))
4846, 47breqtrrd 4641 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (#‘𝑠))
49 simprl2 1105 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))
5022, 48, 49jca32 557 . . . . . 6 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (#‘𝑠) = (𝐾𝐴))) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5150expr 642 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠)) → ((#‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5214, 51sylan2b 492 . . . 4 ((𝜑𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((#‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5352expimpd 628 . . 3 (𝜑 → ((𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ∧ (#‘𝑠) = (𝐾𝐴)) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5453reximdv2 3008 . 2 (𝜑 → (∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (#‘𝑠) = (𝐾𝐴) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5512, 54mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  {crab 2911  Vcvv 3186  cun 3553  wss 3555  𝒫 cpw 4130  {csn 4148   class class class wbr 4613  cmpt 4673   Or wor 4994  cres 5076  cima 5077  Fun wfun 5841  wf 5843  1-1wf1 5844  cfv 5847   Isom wiso 5848  (class class class)co 6604  Fincfn 7899  supcsup 8290  cr 9879  1c1 9881  +∞cpnf 10015   < clt 10018  cle 10019  cmin 10210  cn 10964  0cn0 11236  cz 11321  cuz 11631  ...cfz 12268  #chash 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058
This theorem is referenced by:  erdszelem11  30888
  Copyright terms: Public domain W3C validator