Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdszelem7 Structured version   Visualization version   GIF version

Theorem erdszelem7 32446
Description: Lemma for erdsze 32451. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze.n (𝜑𝑁 ∈ ℕ)
erdsze.f (𝜑𝐹:(1...𝑁)–1-1→ℝ)
erdszelem.k 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
erdszelem.o 𝑂 Or ℝ
erdszelem.a (𝜑𝐴 ∈ (1...𝑁))
erdszelem7.r (𝜑𝑅 ∈ ℕ)
erdszelem7.m (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
Assertion
Ref Expression
erdszelem7 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Distinct variable groups:   𝑥,𝑦,𝑠,𝐹   𝐾,𝑠   𝐴,𝑠,𝑥,𝑦   𝑂,𝑠,𝑥,𝑦   𝑅,𝑠,𝑥,𝑦   𝑁,𝑠,𝑥,𝑦   𝜑,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐾(𝑥,𝑦)

Proof of Theorem erdszelem7
StepHypRef Expression
1 hashf 13701 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
2 ffun 6519 . . . 4 (♯:V⟶(ℕ0 ∪ {+∞}) → Fun ♯)
31, 2ax-mp 5 . . 3 Fun ♯
4 erdszelem.a . . . 4 (𝜑𝐴 ∈ (1...𝑁))
5 erdsze.n . . . . 5 (𝜑𝑁 ∈ ℕ)
6 erdsze.f . . . . 5 (𝜑𝐹:(1...𝑁)–1-1→ℝ)
7 erdszelem.k . . . . 5 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝑥𝑦)}), ℝ, < ))
8 erdszelem.o . . . . 5 𝑂 Or ℝ
95, 6, 7, 8erdszelem5 32444 . . . 4 ((𝜑𝐴 ∈ (1...𝑁)) → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
104, 9mpdan 685 . . 3 (𝜑 → (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}))
11 fvelima 6733 . . 3 ((Fun ♯ ∧ (𝐾𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)})) → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
123, 10, 11sylancr 589 . 2 (𝜑 → ∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴))
13 eqid 2823 . . . . . 6 {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}
1413erdszelem1 32440 . . . . 5 (𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ↔ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠))
15 simprl1 1214 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝐴))
16 elfzuz3 12908 . . . . . . . . . . 11 (𝐴 ∈ (1...𝑁) → 𝑁 ∈ (ℤ𝐴))
17 fzss2 12950 . . . . . . . . . . 11 (𝑁 ∈ (ℤ𝐴) → (1...𝐴) ⊆ (1...𝑁))
184, 16, 173syl 18 . . . . . . . . . 10 (𝜑 → (1...𝐴) ⊆ (1...𝑁))
1918adantr 483 . . . . . . . . 9 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (1...𝐴) ⊆ (1...𝑁))
2015, 19sstrd 3979 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ⊆ (1...𝑁))
21 velpw 4546 . . . . . . . 8 (𝑠 ∈ 𝒫 (1...𝑁) ↔ 𝑠 ⊆ (1...𝑁))
2220, 21sylibr 236 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑠 ∈ 𝒫 (1...𝑁))
23 erdszelem7.m . . . . . . . . . . 11 (𝜑 → ¬ (𝐾𝐴) ∈ (1...(𝑅 − 1)))
245, 6, 7, 8erdszelem6 32445 . . . . . . . . . . . . . . 15 (𝜑𝐾:(1...𝑁)⟶ℕ)
2524, 4ffvelrnd 6854 . . . . . . . . . . . . . 14 (𝜑 → (𝐾𝐴) ∈ ℕ)
26 nnuz 12284 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
2725, 26eleqtrdi 2925 . . . . . . . . . . . . 13 (𝜑 → (𝐾𝐴) ∈ (ℤ‘1))
28 erdszelem7.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ ℕ)
29 nnz 12007 . . . . . . . . . . . . . 14 (𝑅 ∈ ℕ → 𝑅 ∈ ℤ)
30 peano2zm 12028 . . . . . . . . . . . . . 14 (𝑅 ∈ ℤ → (𝑅 − 1) ∈ ℤ)
3128, 29, 303syl 18 . . . . . . . . . . . . 13 (𝜑 → (𝑅 − 1) ∈ ℤ)
32 elfz5 12903 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ (ℤ‘1) ∧ (𝑅 − 1) ∈ ℤ) → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3327, 31, 32syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
34 nnltlem1 12052 . . . . . . . . . . . . 13 (((𝐾𝐴) ∈ ℕ ∧ 𝑅 ∈ ℕ) → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3525, 28, 34syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ((𝐾𝐴) < 𝑅 ↔ (𝐾𝐴) ≤ (𝑅 − 1)))
3633, 35bitr4d 284 . . . . . . . . . . 11 (𝜑 → ((𝐾𝐴) ∈ (1...(𝑅 − 1)) ↔ (𝐾𝐴) < 𝑅))
3723, 36mtbid 326 . . . . . . . . . 10 (𝜑 → ¬ (𝐾𝐴) < 𝑅)
3828nnred 11655 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℝ)
3913erdszelem2 32441 . . . . . . . . . . . . . 14 ((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ∈ Fin ∧ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ)
4039simpri 488 . . . . . . . . . . . . 13 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℕ
41 nnssre 11644 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
4240, 41sstri 3978 . . . . . . . . . . . 12 (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) ⊆ ℝ
4342, 10sseldi 3967 . . . . . . . . . . 11 (𝜑 → (𝐾𝐴) ∈ ℝ)
4438, 43lenltd 10788 . . . . . . . . . 10 (𝜑 → (𝑅 ≤ (𝐾𝐴) ↔ ¬ (𝐾𝐴) < 𝑅))
4537, 44mpbird 259 . . . . . . . . 9 (𝜑𝑅 ≤ (𝐾𝐴))
4645adantr 483 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (𝐾𝐴))
47 simprr 771 . . . . . . . 8 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (♯‘𝑠) = (𝐾𝐴))
4846, 47breqtrrd 5096 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → 𝑅 ≤ (♯‘𝑠))
49 simprl2 1215 . . . . . . 7 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))
5022, 48, 49jca32 518 . . . . . 6 ((𝜑 ∧ ((𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠) ∧ (♯‘𝑠) = (𝐾𝐴))) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5150expr 459 . . . . 5 ((𝜑 ∧ (𝑠 ⊆ (1...𝐴) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)) ∧ 𝐴𝑠)) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5214, 51sylan2b 595 . . . 4 ((𝜑𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)}) → ((♯‘𝑠) = (𝐾𝐴) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5352expimpd 456 . . 3 (𝜑 → ((𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} ∧ (♯‘𝑠) = (𝐾𝐴)) → (𝑠 ∈ 𝒫 (1...𝑁) ∧ (𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))))
5453reximdv2 3273 . 2 (𝜑 → (∃𝑠 ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹𝑦) Isom < , 𝑂 (𝑦, (𝐹𝑦)) ∧ 𝐴𝑦)} (♯‘𝑠) = (𝐾𝐴) → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠)))))
5512, 54mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹𝑠) Isom < , 𝑂 (𝑠, (𝐹𝑠))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  Vcvv 3496  cun 3936  wss 3938  𝒫 cpw 4541  {csn 4569   class class class wbr 5068  cmpt 5148   Or wor 5475  cres 5559  cima 5560  Fun wfun 6351  wf 6353  1-1wf1 6354  cfv 6357   Isom wiso 6358  (class class class)co 7158  Fincfn 8511  supcsup 8906  cr 10538  1c1 10540  +∞cpnf 10674   < clt 10677  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694
This theorem is referenced by:  erdszelem11  32450
  Copyright terms: Public domain W3C validator