MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erexb Structured version   Visualization version   GIF version

Theorem erexb 7719
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 7051 . . 3 (𝑅 ∈ V → dom 𝑅 ∈ V)
2 erdm 7704 . . . 4 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
32eleq1d 2683 . . 3 (𝑅 Er 𝐴 → (dom 𝑅 ∈ V ↔ 𝐴 ∈ V))
41, 3syl5ib 234 . 2 (𝑅 Er 𝐴 → (𝑅 ∈ V → 𝐴 ∈ V))
5 erex 7718 . 2 (𝑅 Er 𝐴 → (𝐴 ∈ V → 𝑅 ∈ V))
64, 5impbid 202 1 (𝑅 Er 𝐴 → (𝑅 ∈ V ↔ 𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1987  Vcvv 3189  dom cdm 5079   Er wer 7691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-er 7694
This theorem is referenced by:  prtex  33680
  Copyright terms: Public domain W3C validator