MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erinxp Structured version   Visualization version   GIF version

Theorem erinxp 8373
Description: A restricted equivalence relation is an equivalence relation. (Contributed by Mario Carneiro, 10-Jul-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
erinxp.r (𝜑𝑅 Er 𝐴)
erinxp.a (𝜑𝐵𝐴)
Assertion
Ref Expression
erinxp (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)

Proof of Theorem erinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relinxp 5689 . . 3 Rel (𝑅 ∩ (𝐵 × 𝐵))
21a1i 11 . 2 (𝜑 → Rel (𝑅 ∩ (𝐵 × 𝐵)))
3 simpr 487 . . . . 5 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦)
4 brinxp2 5631 . . . . 5 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦 ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
53, 4sylib 220 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → ((𝑥𝐵𝑦𝐵) ∧ 𝑥𝑅𝑦))
65simplrd 768 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝐵)
75simplld 766 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝐵)
8 erinxp.r . . . . 5 (𝜑𝑅 Er 𝐴)
98adantr 483 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑅 Er 𝐴)
105simprd 498 . . . 4 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑥𝑅𝑦)
119, 10ersym 8303 . . 3 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦𝑅𝑥)
12 brinxp2 5631 . . 3 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ ((𝑦𝐵𝑥𝐵) ∧ 𝑦𝑅𝑥))
136, 7, 11, 12syl21anbrc 1340 . 2 ((𝜑𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑥)
147adantrr 715 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝐵)
15 simprr 771 . . . . 5 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)
16 brinxp2 5631 . . . . 5 (𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1715, 16sylib 220 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → ((𝑦𝐵𝑧𝐵) ∧ 𝑦𝑅𝑧))
1817simplrd 768 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑧𝐵)
198adantr 483 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑅 Er 𝐴)
2010adantrr 715 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑦)
2117simprd 498 . . . 4 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑦𝑅𝑧)
2219, 20, 21ertrd 8307 . . 3 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥𝑅𝑧)
23 brinxp2 5631 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧 ↔ ((𝑥𝐵𝑧𝐵) ∧ 𝑥𝑅𝑧))
2414, 18, 22, 23syl21anbrc 1340 . 2 ((𝜑 ∧ (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑦𝑦(𝑅 ∩ (𝐵 × 𝐵))𝑧)) → 𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑧)
258adantr 483 . . . . . 6 ((𝜑𝑥𝐵) → 𝑅 Er 𝐴)
26 erinxp.a . . . . . . 7 (𝜑𝐵𝐴)
2726sselda 3969 . . . . . 6 ((𝜑𝑥𝐵) → 𝑥𝐴)
2825, 27erref 8311 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝑅𝑥)
2928ex 415 . . . 4 (𝜑 → (𝑥𝐵𝑥𝑅𝑥))
3029pm4.71rd 565 . . 3 (𝜑 → (𝑥𝐵 ↔ (𝑥𝑅𝑥𝑥𝐵)))
31 brin 5120 . . . 4 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥))
32 brxp 5603 . . . . . 6 (𝑥(𝐵 × 𝐵)𝑥 ↔ (𝑥𝐵𝑥𝐵))
33 anidm 567 . . . . . 6 ((𝑥𝐵𝑥𝐵) ↔ 𝑥𝐵)
3432, 33bitri 277 . . . . 5 (𝑥(𝐵 × 𝐵)𝑥𝑥𝐵)
3534anbi2i 624 . . . 4 ((𝑥𝑅𝑥𝑥(𝐵 × 𝐵)𝑥) ↔ (𝑥𝑅𝑥𝑥𝐵))
3631, 35bitri 277 . . 3 (𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥 ↔ (𝑥𝑅𝑥𝑥𝐵))
3730, 36syl6bbr 291 . 2 (𝜑 → (𝑥𝐵𝑥(𝑅 ∩ (𝐵 × 𝐵))𝑥))
382, 13, 24, 37iserd 8317 1 (𝜑 → (𝑅 ∩ (𝐵 × 𝐵)) Er 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  cin 3937  wss 3938   class class class wbr 5068   × cxp 5555  Rel wrel 5562   Er wer 8288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-opab 5131  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-er 8291
This theorem is referenced by:  frgpuplem  18900  pi1buni  23646  pi1addf  23653  pi1addval  23654  pi1grplem  23655
  Copyright terms: Public domain W3C validator