Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem1-rN Structured version   Visualization version   GIF version

Theorem erngdvlem1-rN 35764
Description: Lemma for eringring 35760. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHyp‘𝐾)
ernggrp.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
ernggrplem.b-r 𝐵 = (Base‘𝐾)
ernggrplem.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
ernggrplem.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
ernggrplem.p-r 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
ernggrplem.o-r 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
ernggrplem.i-r 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
Assertion
Ref Expression
erngdvlem1-rN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   𝑂(𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem1-rN
Dummy variables 𝑡 𝑠 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 eqid 2621 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase-rN 35577 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2627 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 eqid 2621 . . . 4 (+g𝐷) = (+g𝐷)
91, 2, 3, 4, 8erngfplus-rN 35578 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
10 ernggrplem.p-r . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
119, 10syl6reqr 2674 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
121, 2, 3, 10tendoplcl 35549 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) ∈ 𝐸)
131, 2, 3, 10tendoplass 35551 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸𝑢𝐸)) → ((𝑠𝑃𝑡)𝑃𝑢) = (𝑠𝑃(𝑡𝑃𝑢)))
14 ernggrplem.b-r . . 3 𝐵 = (Base‘𝐾)
15 ernggrplem.o-r . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1614, 1, 2, 3, 15tendo0cl 35558 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
1714, 1, 2, 3, 15, 10tendo0pl 35559 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝑂𝑃𝑠) = 𝑠)
18 ernggrplem.i-r . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
191, 2, 3, 18tendoicl 35564 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → (𝐼𝑠) ∈ 𝐸)
201, 2, 3, 18, 14, 10, 15tendoipl 35565 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸) → ((𝐼𝑠)𝑃𝑠) = 𝑂)
217, 11, 12, 13, 16, 17, 19, 20isgrpd 17365 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cmpt 4673   I cid 4984  ccnv 5073  cres 5076  ccom 5078  cfv 5847  cmpt2 6606  Basecbs 15781  +gcplusg 15862  Grpcgrp 17343  HLchlt 34117  LHypclh 34750  LTrncltrn 34867  TEndoctendo 35520  EDRingRcedring-rN 35522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-riotaBAD 33719
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-undef 7344  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-0g 16023  df-preset 16849  df-poset 16867  df-plt 16879  df-lub 16895  df-glb 16896  df-join 16897  df-meet 16898  df-p0 16960  df-p1 16961  df-lat 16967  df-clat 17029  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-oposet 33943  df-ol 33945  df-oml 33946  df-covers 34033  df-ats 34034  df-atl 34065  df-cvlat 34089  df-hlat 34118  df-llines 34264  df-lplanes 34265  df-lvols 34266  df-lines 34267  df-psubsp 34269  df-pmap 34270  df-padd 34562  df-lhyp 34754  df-laut 34755  df-ldil 34870  df-ltrn 34871  df-trl 34926  df-tendo 35523  df-edring-rN 35524
This theorem is referenced by:  erngdvlem2-rN  35765  erngdvlem3-rN  35766  erngdvlem4-rN  35767
  Copyright terms: Public domain W3C validator