Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem4 Structured version   Visualization version   GIF version

Theorem erngdvlem4 35745
Description: Lemma for erngdv 35747. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHyp‘𝐾)
ernggrp.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erngdv.b 𝐵 = (Base‘𝐾)
erngdv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngdv.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngdv.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
erngdv.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erngdv.i 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
erngrnglem.m + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
edlemk6.j = (join‘𝐾)
edlemk6.m = (meet‘𝐾)
edlemk6.r 𝑅 = ((trL‘𝐾)‘𝑊)
edlemk6.p 𝑄 = ((oc‘𝐾)‘𝑊)
edlemk6.z 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
edlemk6.y 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
edlemk6.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
edlemk6.u 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
Assertion
Ref Expression
erngdvlem4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Distinct variable groups:   𝐵,𝑓   𝐷,𝑠   𝑎,𝑏,𝑠,𝐸   𝑓,𝑎,𝐾,𝑏,𝑠   𝑓,𝐻,𝑠   0 ,𝑠   𝑇,𝑎,𝑏,𝑓,𝑠   𝑊,𝑎,𝑏,𝑓,𝑠   𝑃,𝑠   𝑔,𝑏,𝑧,   ,𝑏,𝑔,𝑧   𝐵,𝑏   𝑔,𝑠,𝐵,𝑧   𝐻,𝑏,𝑔,𝑧   𝑔,𝐾,𝑧   + ,𝑠   𝑃,𝑔,𝑧   𝑄,𝑏,𝑔,𝑧   𝑅,𝑏,𝑔,𝑧   𝑇,𝑔,𝑧   𝑔,𝑊,𝑧   𝑧,𝑌   𝑔,𝑍   𝑓,𝑔,𝑧   ,𝑏,𝑔,𝑠,𝑧
Allowed substitution hints:   𝐵(,𝑎)   𝐷(𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑃(𝑓,,𝑎,𝑏)   + (𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑄(𝑓,,𝑠,𝑎)   𝑅(𝑓,,𝑠,𝑎)   𝑇()   𝑈(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝐸(𝑧,𝑓,𝑔,)   𝐻(,𝑎)   𝐼(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   (𝑓,,𝑠,𝑎)   𝐾()   (𝑓,,𝑠,𝑎)   𝑊()   𝑋(𝑧,𝑓,𝑔,,𝑠,𝑎,𝑏)   𝑌(𝑓,𝑔,,𝑠,𝑎,𝑏)   0 (𝑧,𝑓,𝑔,,𝑎,𝑏)   𝑍(𝑧,𝑓,,𝑠,𝑎,𝑏)

Proof of Theorem erngdvlem4
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 erngdv.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngdv.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d . . . . 5 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2626 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase 35555 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2632 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
87adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐸 = (Base‘𝐷))
9 eqid 2626 . . . . 5 (.r𝐷) = (.r𝐷)
101, 2, 3, 4, 9erngfmul 35559 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (.r𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏)))
11 erngrnglem.m . . . 4 + = (𝑎𝐸, 𝑏𝐸 ↦ (𝑎𝑏))
1210, 11syl6reqr 2679 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (.r𝐷))
1312adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → + = (.r𝐷))
14 erngdv.b . . . . . . 7 𝐵 = (Base‘𝐾)
15 erngdv.o . . . . . . 7 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1614, 1, 2, 3, 15tendo0cl 35544 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐸)
1716, 6eleqtrrd 2707 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 ∈ (Base‘𝐷))
18 eqid 2626 . . . . . . . . 9 (+g𝐷) = (+g𝐷)
191, 2, 3, 4, 18erngfplus 35556 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
20 erngdv.p . . . . . . . 8 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
2119, 20syl6reqr 2679 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
2221oveqd 6622 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 𝑃 0 ) = ( 0 (+g𝐷) 0 ))
2314, 1, 2, 3, 15, 20tendo0pl 35545 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 0𝐸) → ( 0 𝑃 0 ) = 0 )
2416, 23mpdan 701 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 𝑃 0 ) = 0 )
2522, 24eqtr3d 2662 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 0 (+g𝐷) 0 ) = 0 )
26 erngdv.i . . . . . . 7 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
271, 4, 14, 2, 3, 20, 15, 26erngdvlem1 35742 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
28 eqid 2626 . . . . . . 7 (0g𝐷) = (0g𝐷)
295, 18, 28isgrpid2 17374 . . . . . 6 (𝐷 ∈ Grp → (( 0 ∈ (Base‘𝐷) ∧ ( 0 (+g𝐷) 0 ) = 0 ) ↔ (0g𝐷) = 0 ))
3027, 29syl 17 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 0 ∈ (Base‘𝐷) ∧ ( 0 (+g𝐷) 0 ) = 0 ) ↔ (0g𝐷) = 0 ))
3117, 25, 30mpbi2and 955 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (0g𝐷) = 0 )
3231eqcomd 2632 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 = (0g𝐷))
3332adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 0 = (0g𝐷))
341, 4, 14, 2, 3, 20, 15, 26, 11erngdvlem3 35744 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Ring)
351, 2, 3, 4, 34erng1lem 35741 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (1r𝐷) = ( I ↾ 𝑇))
3635eqcomd 2632 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) = (1r𝐷))
3736adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) = (1r𝐷))
3834adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ Ring)
39 simp1l 1083 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4012oveqd 6622 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
4139, 40syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠 + 𝑡) = (𝑠(.r𝐷)𝑡))
42 simp2l 1085 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → 𝑠𝐸)
43 simp3l 1087 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → 𝑡𝐸)
441, 2, 3, 4, 9erngmul 35560 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑡𝐸)) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
4539, 42, 43, 44syl12anc 1321 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠(.r𝐷)𝑡) = (𝑠𝑡))
4641, 45eqtrd 2660 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠 + 𝑡) = (𝑠𝑡))
4714, 1, 2, 3, 15tendoconid 35583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠𝑡) ≠ 0 )
48473adant1r 1316 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠𝑡) ≠ 0 )
4946, 48eqnetrd 2863 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 ) ∧ (𝑡𝐸𝑡0 )) → (𝑠 + 𝑡) ≠ 0 )
5014, 1, 2, 3, 15tendo1ne0 35582 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ≠ 0 )
5150adantr 481 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → ( I ↾ 𝑇) ≠ 0 )
52 simpll 789 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝐾 ∈ HL ∧ 𝑊𝐻))
53 simplrl 799 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → 𝑇)
54 simpr 477 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝑠𝐸𝑠0 ))
55 edlemk6.j . . . . 5 = (join‘𝐾)
56 edlemk6.m . . . . 5 = (meet‘𝐾)
57 edlemk6.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
58 edlemk6.p . . . . 5 𝑄 = ((oc‘𝐾)‘𝑊)
59 edlemk6.z . . . . 5 𝑍 = ((𝑄 (𝑅𝑏)) ((𝑄) (𝑅‘(𝑏(𝑠)))))
60 edlemk6.y . . . . 5 𝑌 = ((𝑄 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
61 edlemk6.x . . . . 5 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅‘(𝑠)) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑄) = 𝑌))
62 edlemk6.u . . . . 5 𝑈 = (𝑔𝑇 ↦ if((𝑠) = , 𝑔, 𝑋))
6314, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15cdleml6 35735 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠0 )) → (𝑈𝐸 ∧ (𝑈‘(𝑠)) = ))
6463simpld 475 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑇 ∧ (𝑠𝐸𝑠0 )) → 𝑈𝐸)
6552, 53, 54, 64syl3anc 1323 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → 𝑈𝐸)
6614, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15cdleml9 35738 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
67663expa 1262 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → 𝑈0 )
6812oveqd 6622 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑈 + 𝑠) = (𝑈(.r𝐷)𝑠))
6968ad2antrr 761 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝑈 + 𝑠) = (𝑈(.r𝐷)𝑠))
70 simprl 793 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → 𝑠𝐸)
711, 2, 3, 4, 9erngmul 35560 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑠𝐸)) → (𝑈(.r𝐷)𝑠) = (𝑈𝑠))
7252, 65, 70, 71syl12anc 1321 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝑈(.r𝐷)𝑠) = (𝑈𝑠))
7314, 55, 56, 1, 2, 57, 58, 59, 60, 61, 62, 3, 15cdleml8 35737 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵)) ∧ (𝑠𝐸𝑠0 )) → (𝑈𝑠) = ( I ↾ 𝑇))
74733expa 1262 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝑈𝑠) = ( I ↾ 𝑇))
7569, 72, 743eqtrd 2664 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) ∧ (𝑠𝐸𝑠0 )) → (𝑈 + 𝑠) = ( I ↾ 𝑇))
768, 13, 33, 37, 38, 49, 51, 65, 67, 75isdrngd 18688 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑇 ≠ ( I ↾ 𝐵))) → 𝐷 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wral 2912  ifcif 4063  cmpt 4678   I cid 4989  ccnv 5078  cres 5081  ccom 5083  cfv 5850  crio 6565  (class class class)co 6605  cmpt2 6607  Basecbs 15776  +gcplusg 15857  .rcmulr 15858  occoc 15865  0gc0g 16016  joincjn 16860  meetcmee 16861  Grpcgrp 17338  1rcur 18417  Ringcrg 18463  DivRingcdr 18663  HLchlt 34103  LHypclh 34736  LTrncltrn 34853  trLctrl 34911  TEndoctendo 35506  EDRingcedring 35507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-riotaBAD 33705
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-tpos 7298  df-undef 7345  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-0g 16018  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-grp 17341  df-minusg 17342  df-mgp 18406  df-ur 18418  df-ring 18465  df-oppr 18539  df-dvdsr 18557  df-unit 18558  df-invr 18588  df-dvr 18599  df-drng 18665  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-llines 34250  df-lplanes 34251  df-lvols 34252  df-lines 34253  df-psubsp 34255  df-pmap 34256  df-padd 34548  df-lhyp 34740  df-laut 34741  df-ldil 34856  df-ltrn 34857  df-trl 34912  df-tendo 35509  df-edring 35511
This theorem is referenced by:  erngdv  35747
  Copyright terms: Public domain W3C validator