Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  errn Structured version   Visualization version   GIF version

Theorem errn 7709
 Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)

Proof of Theorem errn
StepHypRef Expression
1 df-rn 5085 . 2 ran 𝑅 = dom 𝑅
2 ercnv 7708 . . . 4 (𝑅 Er 𝐴𝑅 = 𝑅)
32dmeqd 5286 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = dom 𝑅)
4 erdm 7697 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
53, 4eqtrd 2655 . 2 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
61, 5syl5eq 2667 1 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480  ◡ccnv 5073  dom cdm 5074  ran crn 5075   Er wer 7684 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085  df-er 7687 This theorem is referenced by:  erssxp  7710  ecss  7733  uniqs2  7754  sylow2a  17955
 Copyright terms: Public domain W3C validator