MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ertr4d Structured version   Visualization version   GIF version

Theorem ertr4d 7709
Description: A transitivity relation for equivalences. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
ersymb.1 (𝜑𝑅 Er 𝑋)
ertr4d.5 (𝜑𝐴𝑅𝐵)
ertr4d.6 (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
ertr4d (𝜑𝐴𝑅𝐶)

Proof of Theorem ertr4d
StepHypRef Expression
1 ersymb.1 . 2 (𝜑𝑅 Er 𝑋)
2 ertr4d.5 . 2 (𝜑𝐴𝑅𝐵)
3 ertr4d.6 . . 3 (𝜑𝐶𝑅𝐵)
41, 3ersym 7702 . 2 (𝜑𝐵𝑅𝐶)
51, 2, 4ertrd 7706 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   class class class wbr 4615   Er wer 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-sn 4151  df-pr 4153  df-op 4157  df-br 4616  df-opab 4676  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-er 7690
This theorem is referenced by:  erref  7710  erdisj  7742  nqereu  9698  nqereq  9704  efgredeu  18089  pi1xfr  22768  pi1xfrcnvlem  22769
  Copyright terms: Public domain W3C validator