MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrcval Structured version   Visualization version   GIF version

Theorem estrcval 17373
Description: Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.)
Hypotheses
Ref Expression
estrcval.c 𝐶 = (ExtStrCat‘𝑈)
estrcval.u (𝜑𝑈𝑉)
estrcval.h (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
estrcval.o (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
Assertion
Ref Expression
estrcval (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem estrcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 estrcval.c . 2 𝐶 = (ExtStrCat‘𝑈)
2 df-estrc 17372 . . 3 ExtStrCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
3 simpr 487 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
43opeq2d 4809 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Base‘ndx), 𝑢⟩ = ⟨(Base‘ndx), 𝑈⟩)
5 eqidd 2822 . . . . . . 7 ((𝜑𝑢 = 𝑈) → ((Base‘𝑦) ↑m (Base‘𝑥)) = ((Base‘𝑦) ↑m (Base‘𝑥)))
63, 3, 5mpoeq123dv 7228 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
7 estrcval.h . . . . . . 7 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
87adantr 483 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))))
96, 8eqtr4d 2859 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥))) = 𝐻)
109opeq2d 4809 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
113sqxpeqd 5586 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑢 × 𝑢) = (𝑈 × 𝑈))
12 eqidd 2822 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)) = (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))
1311, 3, 12mpoeq123dv 7228 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
14 estrcval.o . . . . . . 7 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1514adantr 483 . . . . . 6 ((𝜑𝑢 = 𝑈) → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))))
1613, 15eqtr4d 2859 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓))) = · )
1716opeq2d 4809 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
184, 10, 17tpeq123d 4683 . . 3 ((𝜑𝑢 = 𝑈) → {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
19 estrcval.u . . . 4 (𝜑𝑈𝑉)
2019elexd 3514 . . 3 (𝜑𝑈 ∈ V)
21 tpex 7469 . . . 4 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
2221a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6775 . 2 (𝜑 → (ExtStrCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
241, 23syl5eq 2868 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {ctp 4570  cop 4572   × cxp 5552  ccom 5558  cfv 6354  (class class class)co 7155  cmpo 7157  1st c1st 7686  2nd c2nd 7687  m cmap 8405  ndxcnx 16479  Basecbs 16482  Hom chom 16575  compcco 16576  ExtStrCatcestrc 17371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-oprab 7159  df-mpo 7160  df-estrc 17372
This theorem is referenced by:  estrcbas  17374  estrchomfval  17375  estrccofval  17378  dfrngc2  44242  dfringc2  44288
  Copyright terms: Public domain W3C validator