MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrreslem2 Structured version   Visualization version   GIF version

Theorem estrreslem2 16547
Description: Lemma 2 for estrres 16548. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
Assertion
Ref Expression
estrreslem2 (𝜑 → (Base‘ndx) ∈ dom 𝐶)

Proof of Theorem estrreslem2
StepHypRef Expression
1 eqidd 2610 . . . 4 (𝜑 → (Base‘ndx) = (Base‘ndx))
213mix1d 1228 . . 3 (𝜑 → ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx)))
3 fvex 6098 . . . 4 (Base‘ndx) ∈ V
4 eltpg 4173 . . . 4 ((Base‘ndx) ∈ V → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
53, 4mp1i 13 . . 3 (𝜑 → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
62, 5mpbird 245 . 2 (𝜑 → (Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
7 df-tp 4129 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩})
87a1i 11 . . . . 5 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
98dmeqd 5235 . . . 4 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
10 dmun 5240 . . . . 5 dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩})
1110a1i 11 . . . 4 (𝜑 → dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}))
12 estrres.b . . . . . 6 (𝜑𝐵𝑉)
13 estrres.h . . . . . 6 (𝜑𝐻𝑋)
14 dmpropg 5512 . . . . . 6 ((𝐵𝑉𝐻𝑋) → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
1512, 13, 14syl2anc 690 . . . . 5 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
16 estrres.x . . . . . 6 (𝜑·𝑌)
17 dmsnopg 5510 . . . . . 6 ( ·𝑌 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1816, 17syl 17 . . . . 5 (𝜑 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1915, 18uneq12d 3729 . . . 4 (𝜑 → (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}) = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
209, 11, 193eqtrd 2647 . . 3 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
21 estrres.c . . . 4 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2221dmeqd 5235 . . 3 (𝜑 → dom 𝐶 = dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
23 df-tp 4129 . . . 4 {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)})
2423a1i 11 . . 3 (𝜑 → {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
2520, 22, 243eqtr4d 2653 . 2 (𝜑 → dom 𝐶 = {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
266, 25eleqtrrd 2690 1 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  w3o 1029   = wceq 1474  wcel 1976  Vcvv 3172  cun 3537  {csn 4124  {cpr 4126  {ctp 4128  cop 4130  dom cdm 5028  cfv 5790  ndxcnx 15638  Basecbs 15641  Hom chom 15725  compcco 15726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-br 4578  df-dm 5038  df-iota 5754  df-fv 5798
This theorem is referenced by:  estrres  16548
  Copyright terms: Public domain W3C validator