MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  esum Structured version   Visualization version   GIF version

Theorem esum 14591
Description: Value of Euler's constant e = 2.71828... (Contributed by Steve Rodriguez, 5-Mar-2006.)
Assertion
Ref Expression
esum e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))

Proof of Theorem esum
StepHypRef Expression
1 df-e 14579 . 2 e = (exp‘1)
2 ax-1cn 9845 . . 3 1 ∈ ℂ
3 efval 14590 . . 3 (1 ∈ ℂ → (exp‘1) = Σ𝑘 ∈ ℕ0 ((1↑𝑘) / (!‘𝑘)))
42, 3ax-mp 5 . 2 (exp‘1) = Σ𝑘 ∈ ℕ0 ((1↑𝑘) / (!‘𝑘))
5 nn0z 11228 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
6 1exp 12701 . . . . 5 (𝑘 ∈ ℤ → (1↑𝑘) = 1)
75, 6syl 17 . . . 4 (𝑘 ∈ ℕ0 → (1↑𝑘) = 1)
87oveq1d 6537 . . 3 (𝑘 ∈ ℕ0 → ((1↑𝑘) / (!‘𝑘)) = (1 / (!‘𝑘)))
98sumeq2i 14218 . 2 Σ𝑘 ∈ ℕ0 ((1↑𝑘) / (!‘𝑘)) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
101, 4, 93eqtri 2630 1 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wcel 1975  cfv 5785  (class class class)co 6522  cc 9785  1c1 9788   / cdiv 10528  0cn0 11134  cz 11205  cexp 12672  !cfa 12872  Σcsu 14205  expce 14572  eceu 14573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-iun 4446  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-er 7601  df-en 7814  df-dom 7815  df-sdom 7816  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-n0 11135  df-z 11206  df-uz 11515  df-fz 12148  df-seq 12614  df-exp 12673  df-sum 14206  df-ef 14578  df-e 14579
This theorem is referenced by:  eirrlem  14712
  Copyright terms: Public domain W3C validator