Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum0 Structured version   Visualization version   GIF version

Theorem esum0 31310
Description: Extended sum of zero. (Contributed by Thierry Arnoux, 3-Mar-2017.)
Hypothesis
Ref Expression
esum0.k 𝑘𝐴
Assertion
Ref Expression
esum0 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Distinct variable group:   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem esum0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 esum0.k . . . 4 𝑘𝐴
21nfel1 2996 . . 3 𝑘 𝐴𝑉
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
4 0e0iccpnf 12850 . . . 4 0 ∈ (0[,]+∞)
54a1i 11 . . 3 ((𝐴𝑉𝑘𝐴) → 0 ∈ (0[,]+∞))
6 xrge0cmn 20589 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7 cmnmnd 18924 . . . . . 6 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
86, 7ax-mp 5 . . . . 5 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
9 vex 3499 . . . . 5 𝑥 ∈ V
10 xrge00 30675 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
1110gsumz 18002 . . . . 5 (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ 𝑥 ∈ V) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
128, 9, 11mp2an 690 . . . 4 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0
1312a1i 11 . . 3 ((𝐴𝑉𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥 ↦ 0)) = 0)
142, 1, 3, 5, 13esumval 31307 . 2 (𝐴𝑉 → Σ*𝑘𝐴0 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ))
15 fconstmpt 5616 . . . . . . 7 ((𝒫 𝐴 ∩ Fin) × {0}) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
1615eqcomi 2832 . . . . . 6 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0})
17 0xr 10690 . . . . . . . . 9 0 ∈ ℝ*
1817rgenw 3152 . . . . . . . 8 𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ*
19 eqid 2823 . . . . . . . . 9 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0)
2019fnmpt 6490 . . . . . . . 8 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)0 ∈ ℝ* → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin))
2118, 20ax-mp 5 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin)
22 0elpw 5258 . . . . . . . . 9 ∅ ∈ 𝒫 𝐴
23 0fin 8748 . . . . . . . . 9 ∅ ∈ Fin
24 elin 4171 . . . . . . . . 9 (∅ ∈ (𝒫 𝐴 ∩ Fin) ↔ (∅ ∈ 𝒫 𝐴 ∧ ∅ ∈ Fin))
2522, 23, 24mpbir2an 709 . . . . . . . 8 ∅ ∈ (𝒫 𝐴 ∩ Fin)
2625ne0ii 4305 . . . . . . 7 (𝒫 𝐴 ∩ Fin) ≠ ∅
27 fconst5 6970 . . . . . . 7 (((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) Fn (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≠ ∅) → ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}))
2821, 26, 27mp2an 690 . . . . . 6 ((𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = ((𝒫 𝐴 ∩ Fin) × {0}) ↔ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
2916, 28mpbi 232 . . . . 5 ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0}
3029a1i 11 . . . 4 (𝐴𝑉 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0) = {0})
3130supeq1d 8912 . . 3 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = sup({0}, ℝ*, < ))
32 xrltso 12537 . . . 4 < Or ℝ*
33 supsn 8938 . . . 4 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
3432, 17, 33mp2an 690 . . 3 sup({0}, ℝ*, < ) = 0
3531, 34syl6eq 2874 . 2 (𝐴𝑉 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ 0), ℝ*, < ) = 0)
3614, 35eqtrd 2858 1 (𝐴𝑉 → Σ*𝑘𝐴0 = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wnfc 2963  wne 3018  wral 3140  Vcvv 3496  cin 3937  c0 4293  𝒫 cpw 4541  {csn 4569  cmpt 5148   Or wor 5475   × cxp 5555  ran crn 5558   Fn wfn 6352  (class class class)co 7158  Fincfn 8511  supcsup 8906  0cc0 10539  +∞cpnf 10674  *cxr 10676   < clt 10677  [,]cicc 12744  s cress 16486   Σg cgsu 16716  *𝑠cxrs 16775  Mndcmnd 17913  CMndccmn 18908  Σ*cesum 31288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-xadd 12511  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-tset 16586  df-ple 16587  df-ds 16589  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-ordt 16776  df-xrs 16777  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-cntz 18449  df-cmn 18910  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-ntr 21630  df-nei 21708  df-cn 21837  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tsms 22737  df-esum 31289
This theorem is referenced by:  esumpad  31316  esumrnmpt2  31329  measvunilem0  31474  ddemeas  31497
  Copyright terms: Public domain W3C validator