Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esum2dlem Structured version   Visualization version   GIF version

Theorem esum2dlem 29287
Description: Lemma for esum2d 29288 (finite case). (Contributed by Thierry Arnoux, 17-May-2020.) (Proof shortened by AV, 17-Sep-2021.)
Hypotheses
Ref Expression
esum2d.0 𝑘𝐹
esum2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶)
esum2d.2 (𝜑𝐴𝑉)
esum2d.3 ((𝜑𝑗𝐴) → 𝐵𝑊)
esum2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
esum2dlem.e (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
esum2dlem (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
Distinct variable groups:   𝑗,𝑘,𝐴,𝑧   𝑧,𝐶   𝐵,𝑘,𝑧   𝑗,𝐹   𝑗,𝑊,𝑘   𝜑,𝑗,𝑘,𝑧
Allowed substitution hints:   𝐵(𝑗)   𝐶(𝑗,𝑘)   𝐹(𝑧,𝑘)   𝑉(𝑧,𝑗,𝑘)   𝑊(𝑧)

Proof of Theorem esum2dlem
Dummy variables 𝑖 𝑙 𝑡 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 esumeq1 29229 . . 3 (𝑎 = ∅ → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶)
2 nfv 1829 . . . 4 𝑧 𝑎 = ∅
3 iuneq1 4464 . . . 4 (𝑎 = ∅ → 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗 ∈ ∅ ({𝑗} × 𝐵))
42, 3esumeq1d 29230 . . 3 (𝑎 = ∅ → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹)
51, 4eqeq12d 2624 . 2 (𝑎 = ∅ → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹))
6 esumeq1 29229 . . 3 (𝑎 = 𝑏 → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗𝑏Σ*𝑘𝐵𝐶)
7 nfv 1829 . . . 4 𝑧 𝑎 = 𝑏
8 iuneq1 4464 . . . 4 (𝑎 = 𝑏 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗𝑏 ({𝑗} × 𝐵))
97, 8esumeq1d 29230 . . 3 (𝑎 = 𝑏 → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹)
106, 9eqeq12d 2624 . 2 (𝑎 = 𝑏 → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹))
11 esumeq1 29229 . . 3 (𝑎 = (𝑏 ∪ {𝑙}) → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶)
12 nfv 1829 . . . 4 𝑧 𝑎 = (𝑏 ∪ {𝑙})
13 iuneq1 4464 . . . 4 (𝑎 = (𝑏 ∪ {𝑙}) → 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵))
1412, 13esumeq1d 29230 . . 3 (𝑎 = (𝑏 ∪ {𝑙}) → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹)
1511, 14eqeq12d 2624 . 2 (𝑎 = (𝑏 ∪ {𝑙}) → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹))
16 esumeq1 29229 . . 3 (𝑎 = 𝐴 → Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑗𝐴Σ*𝑘𝐵𝐶)
17 nfv 1829 . . . 4 𝑧 𝑎 = 𝐴
18 iuneq1 4464 . . . 4 (𝑎 = 𝐴 𝑗𝑎 ({𝑗} × 𝐵) = 𝑗𝐴 ({𝑗} × 𝐵))
1917, 18esumeq1d 29230 . . 3 (𝑎 = 𝐴 → Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
2016, 19eqeq12d 2624 . 2 (𝑎 = 𝐴 → (Σ*𝑗𝑎Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑎 ({𝑗} × 𝐵)𝐹 ↔ Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹))
21 esumnul 29243 . . . 4 Σ*𝑧 ∈ ∅𝐹 = 0
22 0iun 4507 . . . . 5 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅
23 esumeq1 29229 . . . . 5 ( 𝑗 ∈ ∅ ({𝑗} × 𝐵) = ∅ → Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ∅𝐹)
2422, 23ax-mp 5 . . . 4 Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ∅𝐹
25 esumnul 29243 . . . 4 Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = 0
2621, 24, 253eqtr4ri 2642 . . 3 Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹
2726a1i 11 . 2 (𝜑 → Σ*𝑗 ∈ ∅Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ ∅ ({𝑗} × 𝐵)𝐹)
28 simpr 475 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹)
29 nfcsb1v 3514 . . . . . . . . 9 𝑗𝑙 / 𝑗𝐵
30 nfcsb1v 3514 . . . . . . . . 9 𝑗𝑙 / 𝑗𝐶
3129, 30nfesum2 29236 . . . . . . . 8 𝑗Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶
32 csbeq1a 3507 . . . . . . . . . 10 (𝑗 = 𝑙𝐵 = 𝑙 / 𝑗𝐵)
33 csbeq1a 3507 . . . . . . . . . 10 (𝑗 = 𝑙𝐶 = 𝑙 / 𝑗𝐶)
3432, 33esumeq12d 29228 . . . . . . . . 9 (𝑗 = 𝑙 → Σ*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
3534adantl 480 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 = 𝑙) → Σ*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
36 simprr 791 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙 ∈ (𝐴𝑏))
3736eldifad 3551 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙𝐴)
38 esum2d.3 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → 𝐵𝑊)
3938adantlr 746 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝐴) → 𝐵𝑊)
4039ralrimiva 2948 . . . . . . . . . 10 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑗𝐴 𝐵𝑊)
41 rspcsbela 3957 . . . . . . . . . 10 ((𝑙𝐴 ∧ ∀𝑗𝐴 𝐵𝑊) → 𝑙 / 𝑗𝐵𝑊)
4237, 40, 41syl2anc 690 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑙 / 𝑗𝐵𝑊)
43 simpll 785 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝜑)
4437adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙𝐴)
45 simpr 475 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑘𝑙 / 𝑗𝐵)
46 esum2d.4 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ (0[,]+∞))
4746ex 448 . . . . . . . . . . . . . 14 (𝜑 → ((𝑗𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞)))
4847sbcimdv 3464 . . . . . . . . . . . . 13 (𝜑 → ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) → [𝑙 / 𝑗]𝐶 ∈ (0[,]+∞)))
49 sbcan 3444 . . . . . . . . . . . . . 14 ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) ↔ ([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]𝑘𝐵))
50 sbcel1v 3461 . . . . . . . . . . . . . . 15 ([𝑙 / 𝑗]𝑗𝐴𝑙𝐴)
51 sbcel2 3940 . . . . . . . . . . . . . . 15 ([𝑙 / 𝑗]𝑘𝐵𝑘𝑙 / 𝑗𝐵)
5250, 51anbi12i 728 . . . . . . . . . . . . . 14 (([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]𝑘𝐵) ↔ (𝑙𝐴𝑘𝑙 / 𝑗𝐵))
5349, 52bitri 262 . . . . . . . . . . . . 13 ([𝑙 / 𝑗](𝑗𝐴𝑘𝐵) ↔ (𝑙𝐴𝑘𝑙 / 𝑗𝐵))
54 vex 3175 . . . . . . . . . . . . . 14 𝑙 ∈ V
55 sbcel1g 3938 . . . . . . . . . . . . . 14 (𝑙 ∈ V → ([𝑙 / 𝑗]𝐶 ∈ (0[,]+∞) ↔ 𝑙 / 𝑗𝐶 ∈ (0[,]+∞)))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 ([𝑙 / 𝑗]𝐶 ∈ (0[,]+∞) ↔ 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
5748, 53, 563imtr3g 282 . . . . . . . . . . . 12 (𝜑 → ((𝑙𝐴𝑘𝑙 / 𝑗𝐵) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞)))
5857imp 443 . . . . . . . . . . 11 ((𝜑 ∧ (𝑙𝐴𝑘𝑙 / 𝑗𝐵)) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
5943, 44, 45, 58syl12anc 1315 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6059ralrimiva 2948 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑘 𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
61 nfcv 2750 . . . . . . . . . 10 𝑘𝑙 / 𝑗𝐵
6261esumcl 29225 . . . . . . . . 9 ((𝑙 / 𝑗𝐵𝑊 ∧ ∀𝑘 𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6342, 60, 62syl2anc 690 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 ∈ (0[,]+∞))
6431, 35, 36, 63esumsnf 29259 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶)
65 esum2d.0 . . . . . . . . 9 𝑘𝐹
66 nfv 1829 . . . . . . . . 9 𝑘(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
67 nfv 1829 . . . . . . . . . . 11 𝑗 𝑧 = ⟨𝑙, 𝑘
6830nfeq2 2765 . . . . . . . . . . 11 𝑗 𝐹 = 𝑙 / 𝑗𝐶
6967, 68nfim 1812 . . . . . . . . . 10 𝑗(𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)
70 opeq1 4334 . . . . . . . . . . . 12 (𝑗 = 𝑙 → ⟨𝑗, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
7170eqeq2d 2619 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑧 = ⟨𝑙, 𝑘⟩))
7233eqeq2d 2619 . . . . . . . . . . 11 (𝑗 = 𝑙 → (𝐹 = 𝐶𝐹 = 𝑙 / 𝑗𝐶))
7371, 72imbi12d 332 . . . . . . . . . 10 (𝑗 = 𝑙 → ((𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶) ↔ (𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)))
74 esum2d.1 . . . . . . . . . 10 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐹 = 𝐶)
7569, 73, 74chvar 2249 . . . . . . . . 9 (𝑧 = ⟨𝑙, 𝑘⟩ → 𝐹 = 𝑙 / 𝑗𝐶)
76 vsnid 4155 . . . . . . . . . . . . . . . . 17 𝑗 ∈ {𝑗}
7776a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝑗 ∈ {𝑗})
78 simpr 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝑘𝐵)
7977, 78opelxpd 5063 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → ⟨𝑗, 𝑘⟩ ∈ ({𝑗} × 𝐵))
80 xp2nd 7067 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ({𝑗} × 𝐵) → (2nd𝑧) ∈ 𝐵)
81 xp1st 7066 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
82 fvex 6098 . . . . . . . . . . . . . . . . . . . . . 22 (1st𝑧) ∈ V
8382elsn 4139 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) ∈ {𝑗} ↔ (1st𝑧) = 𝑗)
8481, 83sylib 206 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
85 eqop 7076 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ ((1st𝑧) = 𝑗 ∧ (2nd𝑧) = 𝑘)))
8684, 85mpbirand 528 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ (2nd𝑧) = 𝑘))
87 eqcom 2616 . . . . . . . . . . . . . . . . . . 19 ((2nd𝑧) = 𝑘𝑘 = (2nd𝑧))
8886, 87syl6bb 274 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ ({𝑗} × 𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
8988ad2antlr 758 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) → (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
9089ralrimiva 2948 . . . . . . . . . . . . . . . 16 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∀𝑘𝐵 (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧)))
91 reu6i 3363 . . . . . . . . . . . . . . . 16 (((2nd𝑧) ∈ 𝐵 ∧ ∀𝑘𝐵 (𝑧 = ⟨𝑗, 𝑘⟩ ↔ 𝑘 = (2nd𝑧))) → ∃!𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
9280, 90, 91syl2an2 870 . . . . . . . . . . . . . . 15 (((𝜑𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃!𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
9379, 92f1mptrn 28622 . . . . . . . . . . . . . 14 ((𝜑𝑗𝐴) → Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩))
9493ex 448 . . . . . . . . . . . . 13 (𝜑 → (𝑗𝐴 → Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
9594sbcimdv 3464 . . . . . . . . . . . 12 (𝜑 → ([𝑙 / 𝑗]𝑗𝐴[𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
96 sbcfung 5813 . . . . . . . . . . . . . 14 (𝑙 ∈ V → ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)))
97 csbcnv 5216 . . . . . . . . . . . . . . . 16 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩)
98 csbmpt12 4924 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝑗, 𝑘⟩))
99 csbopg 4352 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ V → 𝑙 / 𝑗𝑗, 𝑘⟩ = ⟨𝑙 / 𝑗𝑗, 𝑙 / 𝑗𝑘⟩)
100 csbvarg 3954 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ V → 𝑙 / 𝑗𝑗 = 𝑙)
101 csbconstg 3511 . . . . . . . . . . . . . . . . . . . . 21 (𝑙 ∈ V → 𝑙 / 𝑗𝑘 = 𝑘)
102100, 101opeq12d 4342 . . . . . . . . . . . . . . . . . . . 20 (𝑙 ∈ V → ⟨𝑙 / 𝑗𝑗, 𝑙 / 𝑗𝑘⟩ = ⟨𝑙, 𝑘⟩)
10399, 102eqtrd 2643 . . . . . . . . . . . . . . . . . . 19 (𝑙 ∈ V → 𝑙 / 𝑗𝑗, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
104103mpteq2dv 4667 . . . . . . . . . . . . . . . . . 18 (𝑙 ∈ V → (𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
10598, 104eqtrd 2643 . . . . . . . . . . . . . . . . 17 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
106105cnveqd 5208 . . . . . . . . . . . . . . . 16 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
10797, 106syl5eqr 2657 . . . . . . . . . . . . . . 15 (𝑙 ∈ V → 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) = (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
108107funeqd 5811 . . . . . . . . . . . . . 14 (𝑙 ∈ V → (Fun 𝑙 / 𝑗(𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
10996, 108bitrd 266 . . . . . . . . . . . . 13 (𝑙 ∈ V → ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
11054, 109ax-mp 5 . . . . . . . . . . . 12 ([𝑙 / 𝑗]Fun (𝑘𝐵 ↦ ⟨𝑗, 𝑘⟩) ↔ Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
11195, 50, 1103imtr3g 282 . . . . . . . . . . 11 (𝜑 → (𝑙𝐴 → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩)))
112111imp 443 . . . . . . . . . 10 ((𝜑𝑙𝐴) → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
11337, 112syldan 485 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Fun (𝑘𝑙 / 𝑗𝐵 ↦ ⟨𝑙, 𝑘⟩))
114 vsnid 4155 . . . . . . . . . . 11 𝑙 ∈ {𝑙}
115114a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → 𝑙 ∈ {𝑙})
116115, 45opelxpd 5063 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑘𝑙 / 𝑗𝐵) → ⟨𝑙, 𝑘⟩ ∈ ({𝑙} × 𝑙 / 𝑗𝐵))
11765, 66, 61, 75, 42, 113, 59, 116esumc 29246 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 = Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹)
118 nfab1 2752 . . . . . . . . . 10 𝑡{𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}
119 nfcv 2750 . . . . . . . . . 10 𝑡({𝑙} × 𝑙 / 𝑗𝐵)
120 opeq1 4334 . . . . . . . . . . . . . 14 (𝑖 = 𝑙 → ⟨𝑖, 𝑘⟩ = ⟨𝑙, 𝑘⟩)
121120eqeq2d 2619 . . . . . . . . . . . . 13 (𝑖 = 𝑙 → (𝑡 = ⟨𝑖, 𝑘⟩ ↔ 𝑡 = ⟨𝑙, 𝑘⟩))
122121rexbidv 3033 . . . . . . . . . . . 12 (𝑖 = 𝑙 → (∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩ ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩))
12354, 122rexsn 4169 . . . . . . . . . . 11 (∃𝑖 ∈ {𝑙}∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩ ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩)
124 elxp2 5046 . . . . . . . . . . 11 (𝑡 ∈ ({𝑙} × 𝑙 / 𝑗𝐵) ↔ ∃𝑖 ∈ {𝑙}∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑖, 𝑘⟩)
125 abid 2597 . . . . . . . . . . 11 (𝑡 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} ↔ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩)
126123, 124, 1253bitr4ri 291 . . . . . . . . . 10 (𝑡 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} ↔ 𝑡 ∈ ({𝑙} × 𝑙 / 𝑗𝐵))
127118, 119, 126eqri 28541 . . . . . . . . 9 {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} = ({𝑙} × 𝑙 / 𝑗𝐵)
128 esumeq1 29229 . . . . . . . . 9 ({𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩} = ({𝑙} × 𝑙 / 𝑗𝐵) → Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
129127, 128ax-mp 5 . . . . . . . 8 Σ*𝑧 ∈ {𝑡 ∣ ∃𝑘 𝑙 / 𝑗𝐵𝑡 = ⟨𝑙, 𝑘⟩}𝐹 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹
130117, 129syl6eq 2659 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑘𝑙 / 𝑗𝐵𝑙 / 𝑗𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
13164, 130eqtrd 2643 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
132131adantr 479 . . . . 5 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶 = Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹)
13328, 132oveq12d 6545 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶) = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
134 nfv 1829 . . . . . 6 𝑗(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
135 nfcv 2750 . . . . . 6 𝑗𝑏
136 nfcv 2750 . . . . . 6 𝑗{𝑙}
137 vex 3175 . . . . . . 7 𝑏 ∈ V
138137a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑏 ∈ V)
139 snex 4830 . . . . . . 7 {𝑙} ∈ V
140139a1i 11 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → {𝑙} ∈ V)
14136eldifbd 3552 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ¬ 𝑙𝑏)
142 disjsn 4191 . . . . . . 7 ((𝑏 ∩ {𝑙}) = ∅ ↔ ¬ 𝑙𝑏)
143141, 142sylibr 222 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → (𝑏 ∩ {𝑙}) = ∅)
144 simpll 785 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝜑)
145 simprl 789 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑏𝐴)
146145sselda 3567 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝐴)
14746anassrs 677 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
148147ralrimiva 2948 . . . . . . . 8 ((𝜑𝑗𝐴) → ∀𝑘𝐵 𝐶 ∈ (0[,]+∞))
149 nfcv 2750 . . . . . . . . 9 𝑘𝐵
150149esumcl 29225 . . . . . . . 8 ((𝐵𝑊 ∧ ∀𝑘𝐵 𝐶 ∈ (0[,]+∞)) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
15138, 148, 150syl2anc 690 . . . . . . 7 ((𝜑𝑗𝐴) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
152144, 146, 151syl2anc 690 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
153 simpll 785 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → 𝜑)
15437snssd 4280 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → {𝑙} ⊆ 𝐴)
155154sselda 3567 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → 𝑗𝐴)
156153, 155, 151syl2anc 690 . . . . . 6 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗 ∈ {𝑙}) → Σ*𝑘𝐵𝐶 ∈ (0[,]+∞))
157134, 135, 136, 138, 140, 143, 152, 156esumsplit 29248 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶))
158157adantr 479 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 +𝑒 Σ*𝑗 ∈ {𝑙*𝑘𝐵𝐶))
159 iunxun 4535 . . . . . . . 8 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑙} ({𝑗} × 𝐵))
160136, 29nfxp 5056 . . . . . . . . . . 11 𝑗({𝑙} × 𝑙 / 𝑗𝐵)
161 sneq 4134 . . . . . . . . . . . 12 (𝑗 = 𝑙 → {𝑗} = {𝑙})
162161, 32xpeq12d 5054 . . . . . . . . . . 11 (𝑗 = 𝑙 → ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵))
163160, 162iunxsngf 28564 . . . . . . . . . 10 (𝑙 ∈ V → 𝑗 ∈ {𝑙} ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵))
16454, 163ax-mp 5 . . . . . . . . 9 𝑗 ∈ {𝑙} ({𝑗} × 𝐵) = ({𝑙} × 𝑙 / 𝑗𝐵)
165164uneq2i 3725 . . . . . . . 8 ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑙} ({𝑗} × 𝐵)) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))
166159, 165eqtri 2631 . . . . . . 7 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))
167 esumeq1 29229 . . . . . . 7 ( 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵)) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹)
168166, 167ax-mp 5 . . . . . 6 Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹
169 nfv 1829 . . . . . . 7 𝑧(𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏)))
170 nfcv 2750 . . . . . . 7 𝑧 𝑗𝑏 ({𝑗} × 𝐵)
171 nfcv 2750 . . . . . . 7 𝑧({𝑙} × 𝑙 / 𝑗𝐵)
172 snex 4830 . . . . . . . . . 10 {𝑗} ∈ V
173146, 39syldan 485 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝐵𝑊)
174 xpexg 6835 . . . . . . . . . 10 (({𝑗} ∈ V ∧ 𝐵𝑊) → ({𝑗} × 𝐵) ∈ V)
175172, 173, 174sylancr 693 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → ({𝑗} × 𝐵) ∈ V)
176175ralrimiva 2948 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ∀𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
177 iunexg 7012 . . . . . . . 8 ((𝑏 ∈ V ∧ ∀𝑗𝑏 ({𝑗} × 𝐵) ∈ V) → 𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
178137, 176, 177sylancr 693 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 ({𝑗} × 𝐵) ∈ V)
179 xpexg 6835 . . . . . . . 8 (({𝑙} ∈ V ∧ 𝑙 / 𝑗𝐵𝑊) → ({𝑙} × 𝑙 / 𝑗𝐵) ∈ V)
180139, 42, 179sylancr 693 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ({𝑙} × 𝑙 / 𝑗𝐵) ∈ V)
181 simpr 475 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝑏)
182141adantr 479 . . . . . . . . . . 11 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → ¬ 𝑙𝑏)
183 nelne2 2878 . . . . . . . . . . 11 ((𝑗𝑏 ∧ ¬ 𝑙𝑏) → 𝑗𝑙)
184181, 182, 183syl2anc 690 . . . . . . . . . 10 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → 𝑗𝑙)
185 disjsn2 4192 . . . . . . . . . 10 (𝑗𝑙 → ({𝑗} ∩ {𝑙}) = ∅)
186 xpdisj1 5460 . . . . . . . . . 10 (({𝑗} ∩ {𝑙}) = ∅ → (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
187184, 185, 1863syl 18 . . . . . . . . 9 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑗𝑏) → (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
188187iuneq2dv 4472 . . . . . . . 8 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = 𝑗𝑏 ∅)
189160iunin1f 28563 . . . . . . . 8 𝑗𝑏 (({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ( 𝑗𝑏 ({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵))
190 iun0 4506 . . . . . . . 8 𝑗𝑏 ∅ = ∅
191188, 189, 1903eqtr3g 2666 . . . . . . 7 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ( 𝑗𝑏 ({𝑗} × 𝐵) ∩ ({𝑙} × 𝑙 / 𝑗𝐵)) = ∅)
192 simpll 785 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝜑)
193 iunss1 4462 . . . . . . . . . 10 (𝑏𝐴 𝑗𝑏 ({𝑗} × 𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
194145, 193syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → 𝑗𝑏 ({𝑗} × 𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
195194sselda 3567 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
196 nfv 1829 . . . . . . . . . 10 𝑗𝜑
197 nfiu1 4480 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐵)
198197nfcri 2744 . . . . . . . . . 10 𝑗 𝑧 𝑗𝐴 ({𝑗} × 𝐵)
199196, 198nfan 1815 . . . . . . . . 9 𝑗(𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵))
200 nfv 1829 . . . . . . . . . 10 𝑘(((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵))
201 nfcv 2750 . . . . . . . . . . 11 𝑘(0[,]+∞)
20265, 201nfel 2762 . . . . . . . . . 10 𝑘 𝐹 ∈ (0[,]+∞)
20374adantl 480 . . . . . . . . . . 11 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐹 = 𝐶)
204 simp-5l 803 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝜑)
205 simp-4r 802 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝑗𝐴)
206 simplr 787 . . . . . . . . . . . 12 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝑘𝐵)
207204, 205, 206, 46syl12anc 1315 . . . . . . . . . . 11 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐶 ∈ (0[,]+∞))
208203, 207eqeltrd 2687 . . . . . . . . . 10 ((((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘𝐵) ∧ 𝑧 = ⟨𝑗, 𝑘⟩) → 𝐹 ∈ (0[,]+∞))
209 elsnxp 5580 . . . . . . . . . . . 12 (𝑗𝐴 → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩))
210209biimpa 499 . . . . . . . . . . 11 ((𝑗𝐴𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
211210adantll 745 . . . . . . . . . 10 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘𝐵 𝑧 = ⟨𝑗, 𝑘⟩)
212200, 202, 208, 211r19.29af2 3056 . . . . . . . . 9 ((((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) ∧ 𝑗𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
213 simpr 475 . . . . . . . . . 10 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
214 eliun 4454 . . . . . . . . . 10 (𝑧 𝑗𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
215213, 214sylib 206 . . . . . . . . 9 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → ∃𝑗𝐴 𝑧 ∈ ({𝑗} × 𝐵))
216199, 212, 215r19.29af 3057 . . . . . . . 8 ((𝜑𝑧 𝑗𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
217192, 195, 216syl2anc 690 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 𝑗𝑏 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞))
218 simpll 785 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝜑)
219 nfcv 2750 . . . . . . . . . . 11 𝑗𝐴
220 nfcv 2750 . . . . . . . . . . 11 𝑗𝑙
221219, 220, 160, 162ssiun2sf 28566 . . . . . . . . . 10 (𝑙𝐴 → ({𝑙} × 𝑙 / 𝑗𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
22237, 221syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → ({𝑙} × 𝑙 / 𝑗𝐵) ⊆ 𝑗𝐴 ({𝑗} × 𝐵))
223222sselda 3567 . . . . . . . 8 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝑧 𝑗𝐴 ({𝑗} × 𝐵))
224218, 223, 216syl2anc 690 . . . . . . 7 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ 𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)) → 𝐹 ∈ (0[,]+∞))
225169, 170, 171, 178, 180, 191, 217, 224esumsplit 29248 . . . . . 6 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑧 ∈ ( 𝑗𝑏 ({𝑗} × 𝐵) ∪ ({𝑙} × 𝑙 / 𝑗𝐵))𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
226168, 225syl5eq 2655 . . . . 5 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
227226adantr 479 . . . 4 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹 = (Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 +𝑒 Σ*𝑧 ∈ ({𝑙} × 𝑙 / 𝑗𝐵)𝐹))
228133, 158, 2273eqtr4d 2653 . . 3 (((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) ∧ Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹) → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹)
229228ex 448 . 2 ((𝜑 ∧ (𝑏𝐴𝑙 ∈ (𝐴𝑏))) → (Σ*𝑗𝑏Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝑏 ({𝑗} × 𝐵)𝐹 → Σ*𝑗 ∈ (𝑏 ∪ {𝑙})Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗 ∈ (𝑏 ∪ {𝑙})({𝑗} × 𝐵)𝐹))
230 esum2dlem.e . 2 (𝜑𝐴 ∈ Fin)
2315, 10, 15, 20, 27, 229, 230findcard2d 8064 1 (𝜑 → Σ*𝑗𝐴Σ*𝑘𝐵𝐶 = Σ*𝑧 𝑗𝐴 ({𝑗} × 𝐵)𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  {cab 2595  wnfc 2737  wne 2779  wral 2895  wrex 2896  ∃!wreu 2897  Vcvv 3172  [wsbc 3401  csb 3498  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  {csn 4124  cop 4130   ciun 4449  cmpt 4637   × cxp 5026  ccnv 5027  Fun wfun 5784  cfv 5790  (class class class)co 6527  1st c1st 7034  2nd c2nd 7035  Fincfn 7818  0cc0 9792  +∞cpnf 9927   +𝑒 cxad 11776  [,]cicc 12005  Σ*cesum 29222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-ordt 15930  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-ps 16969  df-tsr 16970  df-plusf 17010  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-mhm 17104  df-submnd 17105  df-grp 17194  df-minusg 17195  df-sbg 17196  df-mulg 17310  df-subg 17360  df-cntz 17519  df-cmn 17964  df-abl 17965  df-mgp 18259  df-ur 18271  df-ring 18318  df-cring 18319  df-subrg 18547  df-abv 18586  df-lmod 18634  df-scaf 18635  df-sra 18939  df-rgmod 18940  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-tmd 21628  df-tgp 21629  df-tsms 21682  df-trg 21715  df-xms 21876  df-ms 21877  df-tms 21878  df-nm 22138  df-ngp 22139  df-nrg 22141  df-nlm 22142  df-ii 22419  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024  df-esum 29223
This theorem is referenced by:  esum2d  29288
  Copyright terms: Public domain W3C validator