Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumc Structured version   Visualization version   GIF version

Theorem esumc 29891
Description: Convert from the collection form to the class-variable form of a sum. (Contributed by Thierry Arnoux, 10-May-2017.)
Hypotheses
Ref Expression
esumc.0 𝑘𝐷
esumc.1 𝑘𝜑
esumc.2 𝑘𝐴
esumc.3 (𝑦 = 𝐶𝐷 = 𝐵)
esumc.4 (𝜑𝐴𝑉)
esumc.5 (𝜑 → Fun (𝑘𝐴𝐶))
esumc.6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumc.7 ((𝜑𝑘𝐴) → 𝐶𝑊)
Assertion
Ref Expression
esumc (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Distinct variable groups:   𝑦,𝑘,𝑧   𝑦,𝐴,𝑧   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑘)   𝐴(𝑘)   𝐵(𝑧,𝑘)   𝐶(𝑘)   𝐷(𝑦,𝑧,𝑘)   𝑉(𝑦,𝑧,𝑘)   𝑊(𝑦,𝑧,𝑘)

Proof of Theorem esumc
StepHypRef Expression
1 esumc.1 . . 3 𝑘𝜑
2 esumc.0 . . 3 𝑘𝐷
3 nfcv 2761 . . 3 𝑦𝐵
4 nfre1 2999 . . . 4 𝑘𝑘𝐴 𝑧 = 𝐶
54nfab 2765 . . 3 𝑘{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
6 esumc.2 . . 3 𝑘𝐴
7 nfmpt1 4707 . . 3 𝑘(𝑘𝐴𝐶)
8 esumc.3 . . 3 (𝑦 = 𝐶𝐷 = 𝐵)
9 esumc.4 . . . . 5 (𝜑𝐴𝑉)
10 elex 3198 . . . . 5 (𝐴𝑉𝐴 ∈ V)
119, 10syl 17 . . . 4 (𝜑𝐴 ∈ V)
126, 11abrexexd 29191 . . 3 (𝜑 → {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ∈ V)
13 esumc.7 . . . . . . 7 ((𝜑𝑘𝐴) → 𝐶𝑊)
1413ex 450 . . . . . 6 (𝜑 → (𝑘𝐴𝐶𝑊))
151, 14ralrimi 2951 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐶𝑊)
166fnmptf 5973 . . . . 5 (∀𝑘𝐴 𝐶𝑊 → (𝑘𝐴𝐶) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐶) Fn 𝐴)
18 esumc.5 . . . 4 (𝜑 → Fun (𝑘𝐴𝐶))
19 eqid 2621 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
2019rnmpt 5331 . . . . 5 ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}
2120a1i 11 . . . 4 (𝜑 → ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
22 dff1o2 6099 . . . 4 ((𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ((𝑘𝐴𝐶) Fn 𝐴 ∧ Fun (𝑘𝐴𝐶) ∧ ran (𝑘𝐴𝐶) = {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}))
2317, 18, 21, 22syl3anbrc 1244 . . 3 (𝜑 → (𝑘𝐴𝐶):𝐴1-1-onto→{𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶})
24 simpr 477 . . . 4 ((𝜑𝑘𝐴) → 𝑘𝐴)
256fvmpt2f 6240 . . . 4 ((𝑘𝐴𝐶𝑊) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
2624, 13, 25syl2anc 692 . . 3 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐶)‘𝑘) = 𝐶)
27 vex 3189 . . . . . 6 𝑦 ∈ V
28 eqeq1 2625 . . . . . . 7 (𝑧 = 𝑦 → (𝑧 = 𝐶𝑦 = 𝐶))
2928rexbidv 3045 . . . . . 6 (𝑧 = 𝑦 → (∃𝑘𝐴 𝑧 = 𝐶 ↔ ∃𝑘𝐴 𝑦 = 𝐶))
3027, 29elab 3333 . . . . 5 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} ↔ ∃𝑘𝐴 𝑦 = 𝐶)
318reximi 3005 . . . . 5 (∃𝑘𝐴 𝑦 = 𝐶 → ∃𝑘𝐴 𝐷 = 𝐵)
3230, 31sylbi 207 . . . 4 (𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶} → ∃𝑘𝐴 𝐷 = 𝐵)
33 nfcv 2761 . . . . . . 7 𝑘(0[,]+∞)
342, 33nfel 2773 . . . . . 6 𝑘 𝐷 ∈ (0[,]+∞)
35 esumc.6 . . . . . . . 8 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
36 eleq1 2686 . . . . . . . 8 (𝐷 = 𝐵 → (𝐷 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
3735, 36syl5ibrcom 237 . . . . . . 7 ((𝜑𝑘𝐴) → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
3837ex 450 . . . . . 6 (𝜑 → (𝑘𝐴 → (𝐷 = 𝐵𝐷 ∈ (0[,]+∞))))
391, 34, 38rexlimd 3019 . . . . 5 (𝜑 → (∃𝑘𝐴 𝐷 = 𝐵𝐷 ∈ (0[,]+∞)))
4039imp 445 . . . 4 ((𝜑 ∧ ∃𝑘𝐴 𝐷 = 𝐵) → 𝐷 ∈ (0[,]+∞))
4132, 40sylan2 491 . . 3 ((𝜑𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}) → 𝐷 ∈ (0[,]+∞))
421, 2, 3, 5, 6, 7, 8, 12, 23, 26, 41esumf1o 29890 . 2 (𝜑 → Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷 = Σ*𝑘𝐴𝐵)
4342eqcomd 2627 1 (𝜑 → Σ*𝑘𝐴𝐵 = Σ*𝑦 ∈ {𝑧 ∣ ∃𝑘𝐴 𝑧 = 𝐶}𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  {cab 2607  wnfc 2748  wral 2907  wrex 2908  Vcvv 3186  cmpt 4673  ccnv 5073  ran crn 5075  Fun wfun 5841   Fn wfn 5842  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  0cc0 9880  +∞cpnf 10015  [,]cicc 12120  Σ*cesum 29867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-xadd 11891  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-tset 15881  df-ple 15882  df-ds 15885  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-ordt 16082  df-xrs 16083  df-ps 17121  df-tsr 17122  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-cntz 17671  df-cmn 18116  df-fbas 19662  df-fg 19663  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-ntr 20734  df-nei 20812  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-tsms 21840  df-esum 29868
This theorem is referenced by:  esumrnmpt  29892  esum2dlem  29932  measvunilem  30053  omssubadd  30140
  Copyright terms: Public domain W3C validator