Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcocn Structured version   Visualization version   GIF version

Theorem esumcocn 29923
 Description: Lemma for esummulc2 29925 and co. Composing with a continuous function preserves extended sums. (Contributed by Thierry Arnoux, 29-Jun-2017.)
Hypotheses
Ref Expression
esumcocn.j 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
esumcocn.a (𝜑𝐴𝑉)
esumcocn.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
esumcocn.1 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
esumcocn.0 (𝜑 → (𝐶‘0) = 0)
esumcocn.f ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
Assertion
Ref Expression
esumcocn (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
Distinct variable groups:   𝐴,𝑘   𝑥,𝑦,𝑘,𝐶   𝑘,𝑉   𝜑,𝑥,𝑦,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦,𝑘)   𝐽(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦)

Proof of Theorem esumcocn
StepHypRef Expression
1 nfv 1840 . . 3 𝑘𝜑
2 nfcv 2761 . . 3 𝑘𝐴
3 esumcocn.a . . 3 (𝜑𝐴𝑉)
4 esumcocn.1 . . . . . 6 (𝜑𝐶 ∈ (𝐽 Cn 𝐽))
5 xrge0tps 29770 . . . . . . . 8 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
6 xrge0base 29470 . . . . . . . . 9 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
7 esumcocn.j . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
8 xrge0topn 29771 . . . . . . . . . 10 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
97, 8eqtr4i 2646 . . . . . . . . 9 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
106, 9tpsuni 20653 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ TopSp → (0[,]+∞) = 𝐽)
115, 10ax-mp 5 . . . . . . 7 (0[,]+∞) = 𝐽
1211, 11cnf 20960 . . . . . 6 (𝐶 ∈ (𝐽 Cn 𝐽) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
134, 12syl 17 . . . . 5 (𝜑𝐶:(0[,]+∞)⟶(0[,]+∞))
1413adantr 481 . . . 4 ((𝜑𝑘𝐴) → 𝐶:(0[,]+∞)⟶(0[,]+∞))
15 esumcocn.b . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1614, 15ffvelrnd 6316 . . 3 ((𝜑𝑘𝐴) → (𝐶𝐵) ∈ (0[,]+∞))
17 xrge0cmn 19707 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1817a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
195a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
20 cmnmnd 18129 . . . . . . . 8 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
2117, 20ax-mp 5 . . . . . . 7 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
2221a1i 11 . . . . . 6 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
23 esumcocn.f . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
24233expib 1265 . . . . . . 7 (𝜑 → ((𝑥 ∈ (0[,]+∞) ∧ 𝑦 ∈ (0[,]+∞)) → (𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦))))
2524ralrimivv 2964 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)))
26 esumcocn.0 . . . . . 6 (𝜑 → (𝐶‘0) = 0)
27 xrge0plusg 29472 . . . . . . . 8 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
28 xrge00 29471 . . . . . . . 8 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
296, 6, 27, 27, 28, 28ismhm 17258 . . . . . . 7 (𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))) ↔ (((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)))
3029biimpri 218 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) ∈ Mnd ∧ (ℝ*𝑠s (0[,]+∞)) ∈ Mnd) ∧ (𝐶:(0[,]+∞)⟶(0[,]+∞) ∧ ∀𝑥 ∈ (0[,]+∞)∀𝑦 ∈ (0[,]+∞)(𝐶‘(𝑥 +𝑒 𝑦)) = ((𝐶𝑥) +𝑒 (𝐶𝑦)) ∧ (𝐶‘0) = 0)) → 𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
3122, 22, 13, 25, 26, 30syl23anc 1330 . . . . 5 (𝜑𝐶 ∈ ((ℝ*𝑠s (0[,]+∞)) MndHom (ℝ*𝑠s (0[,]+∞))))
32 eqidd 2622 . . . . . 6 (𝜑 → (𝑘𝐴𝐵) = (𝑘𝐴𝐵))
3332, 15fmpt3d 6341 . . . . 5 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
341, 2, 3, 15esumel 29890 . . . . 5 (𝜑 → Σ*𝑘𝐴𝐵 ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
356, 9, 9, 18, 19, 18, 19, 31, 4, 3, 33, 34tsmsmhm 21859 . . . 4 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))))
3613, 15cofmpt 29306 . . . . 5 (𝜑 → (𝐶 ∘ (𝑘𝐴𝐵)) = (𝑘𝐴 ↦ (𝐶𝐵)))
3736oveq2d 6620 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝐶 ∘ (𝑘𝐴𝐵))) = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
3835, 37eleqtrd 2700 . . 3 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴 ↦ (𝐶𝐵))))
391, 2, 3, 16, 38esumid 29887 . 2 (𝜑 → Σ*𝑘𝐴(𝐶𝐵) = (𝐶‘Σ*𝑘𝐴𝐵))
4039eqcomd 2627 1 (𝜑 → (𝐶‘Σ*𝑘𝐴𝐵) = Σ*𝑘𝐴(𝐶𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∪ cuni 4402   ↦ cmpt 4673   ∘ ccom 5078  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  0cc0 9880  +∞cpnf 10015   ≤ cle 10019   +𝑒 cxad 11888  [,]cicc 12120   ↾s cress 15782   ↾t crest 16002  TopOpenctopn 16003  ordTopcordt 16080  ℝ*𝑠cxrs 16081  Mndcmnd 17215   MndHom cmhm 17254  CMndccmn 18114  TopSpctps 20619   Cn ccn 20938   tsums ctsu 21839  Σ*cesum 29870 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-xadd 11891  df-ioo 12121  df-ioc 12122  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-tset 15881  df-ple 15882  df-ds 15885  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-ordt 16082  df-xrs 16083  df-mre 16167  df-mrc 16168  df-acs 16170  df-ps 17121  df-tsr 17122  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-cntz 17671  df-cmn 18116  df-fbas 19662  df-fg 19663  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-ntr 20734  df-nei 20812  df-cn 20941  df-cnp 20942  df-haus 21029  df-fil 21560  df-fm 21652  df-flim 21653  df-flf 21654  df-tsms 21840  df-esum 29871 This theorem is referenced by:  esummulc1  29924
 Copyright terms: Public domain W3C validator