Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvg Structured version   Visualization version   GIF version

Theorem esumcvg 31338
Description: The sequence of partial sums of an extended sum converges to the whole sum. cf. fsumcvg2 15076. (Contributed by Thierry Arnoux, 5-Sep-2017.)
Hypotheses
Ref Expression
esumcvg.j 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
esumcvg.f 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
esumcvg.a ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
esumcvg.m (𝑘 = 𝑚𝐴 = 𝐵)
Assertion
Ref Expression
esumcvg (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Distinct variable groups:   𝑚,𝑛,𝐴   𝑘,𝑛,𝐵   𝑘,𝑚,𝐹,𝑛   𝑘,𝐽,𝑛   𝜑,𝑘,𝑚,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑚)   𝐽(𝑚)

Proof of Theorem esumcvg
Dummy variables 𝑙 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12273 . . . . . 6 ℕ = (ℤ‘1)
2 1zzd 12005 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 1 ∈ ℤ)
3 simpr 487 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
4 rge0ssre 12836 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
5 ax-resscn 10586 . . . . . . . . 9 ℝ ⊆ ℂ
64, 5sstri 3974 . . . . . . . 8 (0[,)+∞) ⊆ ℂ
7 esumcvg.m . . . . . . . . . . . . 13 (𝑘 = 𝑚𝐴 = 𝐵)
87eleq1d 2895 . . . . . . . . . . . 12 (𝑘 = 𝑚 → (𝐴 ∈ (0[,)+∞) ↔ 𝐵 ∈ (0[,)+∞)))
98cbvralvw 3448 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
10 rsp 3203 . . . . . . . . . . 11 (∀𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
119, 10sylbir 237 . . . . . . . . . 10 (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1211adantl 484 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑘 ∈ ℕ → 𝐴 ∈ (0[,)+∞)))
1312imp 409 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
146, 13sseldi 3963 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
1514adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
16 esumcvg.f . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
17 fzfid 13333 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (1...𝑛) ∈ Fin)
18 elfznn 12928 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑛) → 𝑘 ∈ ℕ)
1918, 13sylan2 594 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2019adantlr 713 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,)+∞))
2117, 20esumpfinval 31327 . . . . . . . . . 10 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ𝑘 ∈ (1...𝑛)𝐴)
2221mpteq2dva 5152 . . . . . . . . 9 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
2316, 22syl5eq 2866 . . . . . . . 8 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴))
246, 20sseldi 3963 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ ℂ)
2517, 24fsumcl 15082 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ ℂ)
2623, 25fvmpt2d 6774 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
2726adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ𝑘 ∈ (1...𝑛)𝐴)
281, 2, 3, 15, 27isumclim3 15106 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴)
29 esumcvg.j . . . . . 6 𝐽 = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
3017, 20fsumrp0cl 30675 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3121, 30eqeltrd 2911 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,)+∞))
3231, 16fmptd 6871 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹:ℕ⟶(0[,)+∞))
3332adantr 483 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
34 simplll 773 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝜑)
35 eqidd 2820 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (𝑚 ∈ ℕ ↦ 𝐵) = (𝑚 ∈ ℕ ↦ 𝐵))
36 eqcom 2826 . . . . . . . . . . . 12 (𝑘 = 𝑚𝑚 = 𝑘)
37 eqcom 2826 . . . . . . . . . . . 12 (𝐴 = 𝐵𝐵 = 𝐴)
387, 36, 373imtr3i 293 . . . . . . . . . . 11 (𝑚 = 𝑘𝐵 = 𝐴)
3938adantl 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ 𝑚 = 𝑘) → 𝐵 = 𝐴)
40 simpr 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
41 esumcvg.a . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
4235, 39, 40, 41fvmptd 6768 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4334, 42sylancom 590 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
4413adantlr 713 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
45 elrege0 12834 . . . . . . . . . 10 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4644, 45sylib 220 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
4746simpld 497 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
48 ovex 7181 . . . . . . . . . . . . . . 15 (1...𝑛) ∈ V
49 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
5018adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
5149, 50, 41syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
5251ralrimiva 3180 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
53 nfcv 2975 . . . . . . . . . . . . . . . 16 𝑘(1...𝑛)
5453esumcl 31282 . . . . . . . . . . . . . . 15 (((1...𝑛) ∈ V ∧ ∀𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5548, 52, 54sylancr 589 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ∈ (0[,]+∞))
5655, 16fmptd 6871 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶(0[,]+∞))
5756ffnd 6508 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
5857adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 Fn ℕ)
59 1z 12004 . . . . . . . . . . . . . 14 1 ∈ ℤ
60 seqfn 13373 . . . . . . . . . . . . . 14 (1 ∈ ℤ → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6159, 60ax-mp 5 . . . . . . . . . . . . 13 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1)
621fneq2i 6444 . . . . . . . . . . . . 13 (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ ↔ seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn (ℤ‘1))
6361, 62mpbir 233 . . . . . . . . . . . 12 seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) Fn ℕ)
65 simplll 773 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
6618, 42sylan2 594 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
6765, 66sylancom 590 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑛)) → ((𝑚 ∈ ℕ ↦ 𝐵)‘𝑘) = 𝐴)
68 simpr 487 . . . . . . . . . . . . . 14 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
6968, 1eleqtrdi 2921 . . . . . . . . . . . . 13 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ (ℤ‘1))
7067, 69, 24fsumser 15079 . . . . . . . . . . . 12 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → Σ𝑘 ∈ (1...𝑛)𝐴 = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7126, 70eqtrd 2854 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = (seq1( + , (𝑚 ∈ ℕ ↦ 𝐵))‘𝑛))
7258, 64, 71eqfnfvd 6798 . . . . . . . . . 10 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7372adantr 483 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 = seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)))
7473, 3eqeltrrd 2912 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → seq1( + , (𝑚 ∈ ℕ ↦ 𝐵)) ∈ dom ⇝ )
751, 2, 43, 47, 74isumrecl 15112 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ)
7646simprd 498 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ ℕ) → 0 ≤ 𝐴)
771, 2, 43, 47, 74, 76isumge0 15113 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 0 ≤ Σ𝑘 ∈ ℕ 𝐴)
78 elrege0 12834 . . . . . . 7 𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞) ↔ (Σ𝑘 ∈ ℕ 𝐴 ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ ℕ 𝐴))
7975, 77, 78sylanbrc 585 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ𝑘 ∈ ℕ 𝐴 ∈ (0[,)+∞))
80 ssid 3987 . . . . . 6 (0[,)+∞) ⊆ (0[,)+∞)
8129, 33, 79, 80lmlimxrge0 31184 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴𝐹 ⇝ Σ𝑘 ∈ ℕ 𝐴))
8228, 81mpbird 259 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽𝑘 ∈ ℕ 𝐴)
8316, 3eqeltrrid 2916 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8422eleq1d 2895 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8584adantr 483 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ↔ (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ ))
8683, 85mpbid 234 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)𝐴) ∈ dom ⇝ )
8744, 7, 86esumpcvgval 31330 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
8882, 87breqtrrd 5085 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
8932adantr 483 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹:ℕ⟶(0[,)+∞))
90 simpr 487 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
9190nnzd 12078 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
92 uzid 12250 . . . . . . . 8 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
93 peano2uz 12293 . . . . . . . 8 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
9491, 92, 933syl 18 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ (ℤ𝑛))
95 simplll 773 . . . . . . . 8 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
9695, 13sylancom 590 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
9790, 94, 96esumpmono 31331 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑛)𝐴 ≤ Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
9826, 21eqtr4d 2857 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
9998adantlr 713 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) = Σ*𝑘 ∈ (1...𝑛)𝐴)
100 oveq2 7156 . . . . . . . . . . 11 (𝑙 = 𝑛 → (1...𝑙) = (1...𝑛))
101 esumeq1 31286 . . . . . . . . . . 11 ((1...𝑙) = (1...𝑛) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
102100, 101syl 17 . . . . . . . . . 10 (𝑙 = 𝑛 → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...𝑛)𝐴)
103102cbvmptv 5160 . . . . . . . . 9 (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴) = (𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴)
10416, 103eqtr4i 2845 . . . . . . . 8 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴)
105104a1i 11 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → 𝐹 = (𝑙 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑙)𝐴))
106 simpr3 1191 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → 𝑙 = (𝑛 + 1))
107 oveq2 7156 . . . . . . . . 9 (𝑙 = (𝑛 + 1) → (1...𝑙) = (1...(𝑛 + 1)))
108 esumeq1 31286 . . . . . . . . 9 ((1...𝑙) = (1...(𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
109106, 107, 1083syl 18 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ (¬ 𝐹 ∈ dom ⇝ ∧ 𝑛 ∈ ℕ ∧ 𝑙 = (𝑛 + 1))) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
1101093anassrs 1355 . . . . . . 7 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = (𝑛 + 1)) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
11190peano2nnd 11647 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝑛 + 1) ∈ ℕ)
112 ovex 7181 . . . . . . . 8 (1...(𝑛 + 1)) ∈ V
113 simp-4l 781 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝜑)
114 elfznn 12928 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑛 + 1)) → 𝑘 ∈ ℕ)
115114adantl 484 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝑘 ∈ ℕ)
116113, 115, 41syl2anc 586 . . . . . . . . 9 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 ∈ (1...(𝑛 + 1))) → 𝐴 ∈ (0[,]+∞))
117116ralrimiva 3180 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
118 nfcv 2975 . . . . . . . . 9 𝑘(1...(𝑛 + 1))
119118esumcl 31282 . . . . . . . 8 (((1...(𝑛 + 1)) ∈ V ∧ ∀𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞)) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
120112, 117, 119sylancr 589 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴 ∈ (0[,]+∞))
121105, 110, 111, 120fvmptd 6768 . . . . . 6 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹‘(𝑛 + 1)) = Σ*𝑘 ∈ (1...(𝑛 + 1))𝐴)
12297, 99, 1213brtr4d 5089 . . . . 5 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑛 ∈ ℕ) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
123 simpr 487 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
12429, 89, 122, 123lmdvglim 31190 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽)+∞)
125 nfv 1909 . . . . . . 7 𝑘(𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞))
126 nfcv 2975 . . . . . . 7 𝑘
127 nnex 11636 . . . . . . . 8 ℕ ∈ V
128127a1i 11 . . . . . . 7 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → ℕ ∈ V)
12941adantlr 713 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
130 simpr 487 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
131 simpll 765 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
132 inss1 4203 . . . . . . . . . . . . . 14 (𝒫 ℕ ∩ Fin) ⊆ 𝒫 ℕ
133 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
134132, 133sseldi 3963 . . . . . . . . . . . . 13 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 ℕ)
135134elpwid 4551 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ⊆ ℕ)
136 simpr 487 . . . . . . . . . . . 12 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
137135, 136sseldd 3966 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝑘 ∈ ℕ)
138131, 137, 13syl2anc 586 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
139138fmpttd 6872 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (𝑘𝑥𝐴):𝑥⟶(0[,)+∞))
140 esumpfinvallem 31326 . . . . . . . . 9 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ∧ (𝑘𝑥𝐴):𝑥⟶(0[,)+∞)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
141130, 139, 140syl2anc 586 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)))
142 inss2 4204 . . . . . . . . . 10 (𝒫 ℕ ∩ Fin) ⊆ Fin
143142, 130sseldi 3963 . . . . . . . . 9 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
144131, 137, 14syl2anc 586 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℂ)
145143, 144gsumfsum 20604 . . . . . . . 8 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → (ℂfld Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
146141, 145eqtr3d 2856 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐴)) = Σ𝑘𝑥 𝐴)
147125, 126, 128, 129, 146esumval 31298 . . . . . 6 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
148147adantr 483 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ))
14989, 122, 123lmdvg 31189 . . . . . . . . . . 11 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
150149r19.21bi 3206 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛))
151 nnz 11996 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → 𝑙 ∈ ℤ)
152 uzid 12250 . . . . . . . . . . . . 13 (𝑙 ∈ ℤ → 𝑙 ∈ (ℤ𝑙))
153151, 152syl 17 . . . . . . . . . . . 12 (𝑙 ∈ ℕ → 𝑙 ∈ (ℤ𝑙))
154 simpr 487 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → 𝑛 = 𝑙)
155154fveq2d 6667 . . . . . . . . . . . . 13 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝐹𝑛) = (𝐹𝑙))
156155breq2d 5069 . . . . . . . . . . . 12 ((𝑙 ∈ ℕ ∧ 𝑛 = 𝑙) → (𝑦 < (𝐹𝑛) ↔ 𝑦 < (𝐹𝑙)))
157153, 156rspcdv 3613 . . . . . . . . . . 11 (𝑙 ∈ ℕ → (∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → 𝑦 < (𝐹𝑙)))
158157reximia 3240 . . . . . . . . . 10 (∃𝑙 ∈ ℕ ∀𝑛 ∈ (ℤ𝑙)𝑦 < (𝐹𝑛) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
159150, 158syl 17 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙))
160 simplr 767 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑦 ∈ ℝ)
16189ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝐹:ℕ⟶(0[,)+∞))
162 simpr 487 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → 𝑙 ∈ ℕ)
163161, 162ffvelrnd 6845 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ (0[,)+∞))
1644, 163sseldi 3963 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) ∈ ℝ)
165 ltle 10721 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐹𝑙) ∈ ℝ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
166160, 164, 165syl2anc 586 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ (𝐹𝑙)))
167 oveq2 7156 . . . . . . . . . . . . . . 15 (𝑛 = 𝑙 → (1...𝑛) = (1...𝑙))
168 esumeq1 31286 . . . . . . . . . . . . . . 15 ((1...𝑛) = (1...𝑙) → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
169167, 168syl 17 . . . . . . . . . . . . . 14 (𝑛 = 𝑙 → Σ*𝑘 ∈ (1...𝑛)𝐴 = Σ*𝑘 ∈ (1...𝑙)𝐴)
170 esumex 31281 . . . . . . . . . . . . . . 15 Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V
171170a1i 11 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 ∈ V)
17216, 169, 162, 171fvmptd3 6784 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ*𝑘 ∈ (1...𝑙)𝐴)
173 fzfid 13333 . . . . . . . . . . . . . 14 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (1...𝑙) ∈ Fin)
174 simp-4l 781 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → (𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)))
175 elfznn 12928 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...𝑙) → 𝑘 ∈ ℕ)
176175adantl 484 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝑘 ∈ ℕ)
177174, 176, 13syl2anc 586 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑙)) → 𝐴 ∈ (0[,)+∞))
178173, 177esumpfinval 31327 . . . . . . . . . . . . 13 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → Σ*𝑘 ∈ (1...𝑙)𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
179172, 178eqtrd 2854 . . . . . . . . . . . 12 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝐹𝑙) = Σ𝑘 ∈ (1...𝑙)𝐴)
180179breq2d 5069 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 ≤ (𝐹𝑙) ↔ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
181166, 180sylibd 241 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) ∧ 𝑙 ∈ ℕ) → (𝑦 < (𝐹𝑙) → 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
182181reximdva 3272 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → (∃𝑙 ∈ ℕ 𝑦 < (𝐹𝑙) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
183159, 182mpd 15 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴)
184 fzssuz 12940 . . . . . . . . . . . . . 14 (1...𝑙) ⊆ (ℤ‘1)
185184, 1sseqtrri 4002 . . . . . . . . . . . . 13 (1...𝑙) ⊆ ℕ
186 ovex 7181 . . . . . . . . . . . . . 14 (1...𝑙) ∈ V
187186elpw 4544 . . . . . . . . . . . . 13 ((1...𝑙) ∈ 𝒫 ℕ ↔ (1...𝑙) ⊆ ℕ)
188185, 187mpbir 233 . . . . . . . . . . . 12 (1...𝑙) ∈ 𝒫 ℕ
189 fzfi 13332 . . . . . . . . . . . 12 (1...𝑙) ∈ Fin
190 elin 4167 . . . . . . . . . . . 12 ((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ↔ ((1...𝑙) ∈ 𝒫 ℕ ∧ (1...𝑙) ∈ Fin))
191188, 189, 190mpbir2an 709 . . . . . . . . . . 11 (1...𝑙) ∈ (𝒫 ℕ ∩ Fin)
192 sumex 15036 . . . . . . . . . . 11 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V
193 eqid 2819 . . . . . . . . . . . 12 (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) = (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
194 sumeq1 15037 . . . . . . . . . . . 12 (𝑥 = (1...𝑙) → Σ𝑘𝑥 𝐴 = Σ𝑘 ∈ (1...𝑙)𝐴)
195193, 194elrnmpt1s 5822 . . . . . . . . . . 11 (((1...𝑙) ∈ (𝒫 ℕ ∩ Fin) ∧ Σ𝑘 ∈ (1...𝑙)𝐴 ∈ V) → Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴))
196191, 192, 195mp2an 690 . . . . . . . . . 10 Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)
197 nfv 1909 . . . . . . . . . . 11 𝑧 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴
198 breq2 5061 . . . . . . . . . . 11 (𝑧 = Σ𝑘 ∈ (1...𝑙)𝐴 → (𝑦𝑧𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴))
199197, 198rspce 3610 . . . . . . . . . 10 ((Σ𝑘 ∈ (1...𝑙)𝐴 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ∧ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
200196, 199mpan 688 . . . . . . . . 9 (𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
201200rexlimivw 3280 . . . . . . . 8 (∃𝑙 ∈ ℕ 𝑦 ≤ Σ𝑘 ∈ (1...𝑙)𝐴 → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
202183, 201syl 17 . . . . . . 7 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
203202ralrimiva 3180 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧)
204 simpr 487 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ (𝒫 ℕ ∩ Fin))
205142, 204sseldi 3963 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → 𝑥 ∈ Fin)
206138adantllr 717 . . . . . . . . . . 11 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ (0[,)+∞))
2074, 206sseldi 3963 . . . . . . . . . 10 (((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) ∧ 𝑘𝑥) → 𝐴 ∈ ℝ)
208205, 207fsumrecl 15083 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ)
209208rexrd 10683 . . . . . . . 8 ((((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ (𝒫 ℕ ∩ Fin)) → Σ𝑘𝑥 𝐴 ∈ ℝ*)
210209fmpttd 6872 . . . . . . 7 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ*)
211 frn 6513 . . . . . . 7 ((𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴):(𝒫 ℕ ∩ Fin)⟶ℝ* → ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ*)
212 supxrunb1 12704 . . . . . . 7 (ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴) ⊆ ℝ* → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
213210, 211, 2123syl 18 . . . . . 6 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → (∀𝑦 ∈ ℝ ∃𝑧 ∈ ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴)𝑦𝑧 ↔ sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞))
214203, 213mpbid 234 . . . . 5 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → sup(ran (𝑥 ∈ (𝒫 ℕ ∩ Fin) ↦ Σ𝑘𝑥 𝐴), ℝ*, < ) = +∞)
215148, 214eqtrd 2854 . . . 4 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
216124, 215breqtrrd 5085 . . 3 (((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) ∧ ¬ 𝐹 ∈ dom ⇝ ) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21788, 216pm2.61dan 811 . 2 ((𝜑 ∧ ∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞)) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
21816reseq1i 5842 . . . . . . . 8 (𝐹 ↾ (ℤ𝑘)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘))
219 eleq1w 2893 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (𝑙 ∈ ℕ ↔ 𝑘 ∈ ℕ))
220219anbi2d 630 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝜑𝑙 ∈ ℕ) ↔ (𝜑𝑘 ∈ ℕ)))
221 sbequ12r 2247 . . . . . . . . . . 11 (𝑙 = 𝑘 → ([𝑙 / 𝑘]𝐴 = +∞ ↔ 𝐴 = +∞))
222220, 221anbi12d 632 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ↔ ((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞)))
223 fveq2 6663 . . . . . . . . . . . 12 (𝑙 = 𝑘 → (ℤ𝑙) = (ℤ𝑘))
224223reseq2d 5846 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)))
225223xpeq1d 5577 . . . . . . . . . . 11 (𝑙 = 𝑘 → ((ℤ𝑙) × {+∞}) = ((ℤ𝑘) × {+∞}))
226224, 225eqeq12d 2835 . . . . . . . . . 10 (𝑙 = 𝑘 → (((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}) ↔ ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
227222, 226imbi12d 347 . . . . . . . . 9 (𝑙 = 𝑘 → ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞})) ↔ (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))))
228 nfv 1909 . . . . . . . . . . . . . 14 𝑘(𝜑𝑙 ∈ ℕ)
229 nfs1v 2267 . . . . . . . . . . . . . 14 𝑘[𝑙 / 𝑘]𝐴 = +∞
230228, 229nfan 1894 . . . . . . . . . . . . 13 𝑘((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞)
231 nfv 1909 . . . . . . . . . . . . 13 𝑘 𝑛 ∈ (ℤ𝑙)
232230, 231nfan 1894 . . . . . . . . . . . 12 𝑘(((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙))
233 ovexd 7183 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → (1...𝑛) ∈ V)
234 simp-4l 781 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝜑)
23518adantl 484 . . . . . . . . . . . . 13 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ ℕ)
236234, 235, 41syl2anc 586 . . . . . . . . . . . 12 (((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) ∧ 𝑘 ∈ (1...𝑛)) → 𝐴 ∈ (0[,]+∞))
237 simpllr 774 . . . . . . . . . . . . . 14 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ ℕ)
238 elnnuz 12274 . . . . . . . . . . . . . . 15 (𝑙 ∈ ℕ ↔ 𝑙 ∈ (ℤ‘1))
239 eluzfz 12895 . . . . . . . . . . . . . . 15 ((𝑙 ∈ (ℤ‘1) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
240238, 239sylanb 583 . . . . . . . . . . . . . 14 ((𝑙 ∈ ℕ ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
241237, 240sylancom 590 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → 𝑙 ∈ (1...𝑛))
242 simplr 767 . . . . . . . . . . . . 13 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → [𝑙 / 𝑘]𝐴 = +∞)
243 sbequ12 2246 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐴 = +∞ ↔ [𝑙 / 𝑘]𝐴 = +∞))
244229, 243rspce 3610 . . . . . . . . . . . . 13 ((𝑙 ∈ (1...𝑛) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
245241, 242, 244syl2anc 586 . . . . . . . . . . . 12 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → ∃𝑘 ∈ (1...𝑛)𝐴 = +∞)
246232, 233, 236, 245esumpinfval 31325 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ 𝑛 ∈ (ℤ𝑙)) → Σ*𝑘 ∈ (1...𝑛)𝐴 = +∞)
247246ralrimiva 3180 . . . . . . . . . 10 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞)
248 eqidd 2820 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → (ℤ𝑙) = (ℤ𝑙))
249 mpteq12 5144 . . . . . . . . . . . 12 (((ℤ𝑙) = (ℤ𝑙) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
250248, 249sylan 582 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
251 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → 𝑙 ∈ ℕ)
252 uznnssnn 12287 . . . . . . . . . . . . 13 (𝑙 ∈ ℕ → (ℤ𝑙) ⊆ ℕ)
253 resmpt 5898 . . . . . . . . . . . . 13 ((ℤ𝑙) ⊆ ℕ → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
254251, 252, 2533syl 18 . . . . . . . . . . . 12 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
255254adantr 483 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = (𝑛 ∈ (ℤ𝑙) ↦ Σ*𝑘 ∈ (1...𝑛)𝐴))
256 fconstmpt 5607 . . . . . . . . . . . 12 ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞)
257256a1i 11 . . . . . . . . . . 11 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((ℤ𝑙) × {+∞}) = (𝑛 ∈ (ℤ𝑙) ↦ +∞))
258250, 255, 2573eqtr4d 2864 . . . . . . . . . 10 ((((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) ∧ ∀𝑛 ∈ (ℤ𝑙*𝑘 ∈ (1...𝑛)𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
259247, 258mpdan 685 . . . . . . . . 9 (((𝜑𝑙 ∈ ℕ) ∧ [𝑙 / 𝑘]𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑙)) = ((ℤ𝑙) × {+∞}))
260227, 259chvarvv 1999 . . . . . . . 8 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → ((𝑛 ∈ ℕ ↦ Σ*𝑘 ∈ (1...𝑛)𝐴) ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
261218, 260syl5eq 2866 . . . . . . 7 (((𝜑𝑘 ∈ ℕ) ∧ 𝐴 = +∞) → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
262261ex 415 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐴 = +∞ → (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
263262reximdva 3272 . . . . 5 (𝜑 → (∃𝑘 ∈ ℕ 𝐴 = +∞ → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})))
264263imp 409 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}))
265 xrge0topn 31179 . . . . . . . . . . 11 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
26629, 265eqtri 2842 . . . . . . . . . 10 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
267 letopon 21805 . . . . . . . . . . 11 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
268 iccssxr 12811 . . . . . . . . . . 11 (0[,]+∞) ⊆ ℝ*
269 resttopon 21761 . . . . . . . . . . 11 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
270267, 268, 269mp2an 690 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
271266, 270eqeltri 2907 . . . . . . . . 9 𝐽 ∈ (TopOn‘(0[,]+∞))
272271a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐽 ∈ (TopOn‘(0[,]+∞)))
273 0xr 10680 . . . . . . . . . 10 0 ∈ ℝ*
274 pnfxr 10687 . . . . . . . . . 10 +∞ ∈ ℝ*
275 0lepnf 12519 . . . . . . . . . 10 0 ≤ +∞
276 ubicc2 12845 . . . . . . . . . 10 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
277273, 274, 275, 276mp3an 1455 . . . . . . . . 9 +∞ ∈ (0[,]+∞)
278277a1i 11 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → +∞ ∈ (0[,]+∞))
27940nnzd 12078 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
280 eqid 2819 . . . . . . . . 9 (ℤ𝑘) = (ℤ𝑘)
281280lmconst 21861 . . . . . . . 8 ((𝐽 ∈ (TopOn‘(0[,]+∞)) ∧ +∞ ∈ (0[,]+∞) ∧ 𝑘 ∈ ℤ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
282272, 278, 279, 281syl3anc 1366 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞)
283 breq1 5060 . . . . . . . 8 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → ((𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞ ↔ ((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞))
284283biimprd 250 . . . . . . 7 ((𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞}) → (((ℤ𝑘) × {+∞})(⇝𝑡𝐽)+∞ → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
285282, 284mpan9 509 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞)
286 ovexd 7183 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (0[,]+∞) ∈ V)
287 cnex 10610 . . . . . . . . . 10 ℂ ∈ V
288287a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℂ ∈ V)
28956adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐹:ℕ⟶(0[,]+∞))
290 nnsscn 11635 . . . . . . . . . 10 ℕ ⊆ ℂ
291290a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ℕ ⊆ ℂ)
292 elpm2r 8416 . . . . . . . . 9 ((((0[,]+∞) ∈ V ∧ ℂ ∈ V) ∧ (𝐹:ℕ⟶(0[,]+∞) ∧ ℕ ⊆ ℂ)) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
293286, 288, 289, 291, 292syl22anc 836 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((0[,]+∞) ↑pm ℂ))
294272, 293, 279lmres 21900 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝐹(⇝𝑡𝐽)+∞ ↔ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞))
295294biimpar 480 . . . . . 6 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘))(⇝𝑡𝐽)+∞) → 𝐹(⇝𝑡𝐽)+∞)
296285, 295syldan 593 . . . . 5 (((𝜑𝑘 ∈ ℕ) ∧ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
297296r19.29an 3286 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ (𝐹 ↾ (ℤ𝑘)) = ((ℤ𝑘) × {+∞})) → 𝐹(⇝𝑡𝐽)+∞)
298264, 297syldan 593 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽)+∞)
299 nfv 1909 . . . . 5 𝑘𝜑
300 nfre1 3304 . . . . 5 𝑘𝑘 ∈ ℕ 𝐴 = +∞
301299, 300nfan 1894 . . . 4 𝑘(𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞)
302127a1i 11 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ℕ ∈ V)
30341adantlr 713 . . . 4 (((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞))
304 simpr 487 . . . 4 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → ∃𝑘 ∈ ℕ 𝐴 = +∞)
305301, 302, 303, 304esumpinfval 31325 . . 3 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → Σ*𝑘 ∈ ℕ𝐴 = +∞)
306298, 305breqtrrd 5085 . 2 ((𝜑 ∧ ∃𝑘 ∈ ℕ 𝐴 = +∞) → 𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
307 eleq1w 2893 . . . . . . . . 9 (𝑘 = 𝑚 → (𝑘 ∈ ℕ ↔ 𝑚 ∈ ℕ))
308307anbi2d 630 . . . . . . . 8 (𝑘 = 𝑚 → ((𝜑𝑘 ∈ ℕ) ↔ (𝜑𝑚 ∈ ℕ)))
3097eleq1d 2895 . . . . . . . 8 (𝑘 = 𝑚 → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
310308, 309imbi12d 347 . . . . . . 7 (𝑘 = 𝑚 → (((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))))
311310, 41chvarvv 1999 . . . . . 6 ((𝜑𝑚 ∈ ℕ) → 𝐵 ∈ (0[,]+∞))
312 eliccelico 30492 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞)))
313273, 274, 275, 312mp3an 1455 . . . . . 6 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
314311, 313sylib 220 . . . . 5 ((𝜑𝑚 ∈ ℕ) → (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
315314ralrimiva 3180 . . . 4 (𝜑 → ∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞))
316 r19.30 3336 . . . 4 (∀𝑚 ∈ ℕ (𝐵 ∈ (0[,)+∞) ∨ 𝐵 = +∞) → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
317315, 316syl 17 . . 3 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
3187eqeq1d 2821 . . . . 5 (𝑘 = 𝑚 → (𝐴 = +∞ ↔ 𝐵 = +∞))
319318cbvrexvw 3449 . . . 4 (∃𝑘 ∈ ℕ 𝐴 = +∞ ↔ ∃𝑚 ∈ ℕ 𝐵 = +∞)
320319orbi2i 909 . . 3 ((∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞) ↔ (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑚 ∈ ℕ 𝐵 = +∞))
321317, 320sylibr 236 . 2 (𝜑 → (∀𝑚 ∈ ℕ 𝐵 ∈ (0[,)+∞) ∨ ∃𝑘 ∈ ℕ 𝐴 = +∞))
322217, 306, 321mpjaodan 955 1 (𝜑𝐹(⇝𝑡𝐽*𝑘 ∈ ℕ𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1531  [wsb 2063  wcel 2108  wral 3136  wrex 3137  Vcvv 3493  cin 3933  wss 3934  𝒫 cpw 4537  {csn 4559   class class class wbr 5057  cmpt 5137   × cxp 5546  dom cdm 5548  ran crn 5549  cres 5550   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  pm cpm 8399  Fincfn 8501  supcsup 8896  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  +∞cpnf 10664  *cxr 10666   < clt 10667  cle 10668  cn 11630  cz 11973  cuz 12235  [,)cico 12732  [,]cicc 12733  ...cfz 12884  seqcseq 13361  cli 14833  Σcsu 15034  s cress 16476  t crest 16686  TopOpenctopn 16687   Σg cgsu 16706  ordTopcordt 16764  *𝑠cxrs 16765  fldccnfld 20537  TopOnctopon 21510  𝑡clm 21826  Σ*cesum 31279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-fi 8867  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-ordt 16766  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-plusf 17843  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-subrg 19525  df-abv 19580  df-lmod 19628  df-scaf 19629  df-sra 19936  df-rgmod 19937  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-fbas 20534  df-fg 20535  df-cnfld 20538  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-cld 21619  df-ntr 21620  df-cls 21621  df-nei 21698  df-lp 21736  df-perf 21737  df-cn 21827  df-cnp 21828  df-lm 21829  df-haus 21915  df-tx 22162  df-hmeo 22355  df-fil 22446  df-fm 22538  df-flim 22539  df-flf 22540  df-tmd 22672  df-tgp 22673  df-tsms 22727  df-trg 22760  df-xms 22922  df-ms 22923  df-tms 22924  df-nm 23184  df-ngp 23185  df-nrg 23187  df-nlm 23188  df-ii 23477  df-cncf 23478  df-limc 24456  df-dv 24457  df-log 25132  df-esum 31280
This theorem is referenced by:  esumcvg2  31339
  Copyright terms: Public domain W3C validator