Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumcvgsum Structured version   Visualization version   GIF version

Theorem esumcvgsum 30480
Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.)
Hypotheses
Ref Expression
esumcvgsum.1 (𝑘 = 𝑖𝐴 = 𝐵)
esumcvgsum.2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
esumcvgsum.3 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
esumcvgsum.4 (𝜑 → seq1( + , 𝐹) ⇝ 𝐿)
esumcvgsum.5 (𝜑𝐿 ∈ ℝ)
Assertion
Ref Expression
esumcvgsum (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Distinct variable groups:   𝑖,𝑘   𝐴,𝑖   𝐵,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑖)   𝐴(𝑘)   𝐵(𝑖)   𝐹(𝑖)   𝐿(𝑖,𝑘)

Proof of Theorem esumcvgsum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 esumcvgsum.2 . 2 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞))
2 esumcvgsum.1 . 2 (𝑘 = 𝑖𝐴 = 𝐵)
3 simpll 807 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑)
4 elfznn 12583 . . . . . . 7 (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ)
54adantl 473 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ)
6 esumcvgsum.3 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = 𝐴)
73, 5, 6syl2anc 696 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹𝑘) = 𝐴)
8 nnuz 11936 . . . . . . . 8 ℕ = (ℤ‘1)
98eleq2i 2831 . . . . . . 7 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
109biimpi 206 . . . . . 6 (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ‘1))
1110adantl 473 . . . . 5 ((𝜑𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ‘1))
12 mnfxr 10308 . . . . . . . . 9 -∞ ∈ ℝ*
13 pnfxr 10304 . . . . . . . . 9 +∞ ∈ ℝ*
14 0re 10252 . . . . . . . . . 10 0 ∈ ℝ
15 mnflt 12170 . . . . . . . . . 10 (0 ∈ ℝ → -∞ < 0)
1614, 15ax-mp 5 . . . . . . . . 9 -∞ < 0
17 pnfge 12177 . . . . . . . . . 10 (+∞ ∈ ℝ* → +∞ ≤ +∞)
1813, 17ax-mp 5 . . . . . . . . 9 +∞ ≤ +∞
19 icossioo 12477 . . . . . . . . 9 (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞))
2012, 13, 16, 18, 19mp4an 711 . . . . . . . 8 (0[,)+∞) ⊆ (-∞(,)+∞)
21 ioomax 12461 . . . . . . . 8 (-∞(,)+∞) = ℝ
2220, 21sseqtri 3778 . . . . . . 7 (0[,)+∞) ⊆ ℝ
233, 5, 1syl2anc 696 . . . . . . 7 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞))
2422, 23sseldi 3742 . . . . . 6 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ)
2524recnd 10280 . . . . 5 (((𝜑𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ)
267, 11, 25fsumser 14680 . . . 4 ((𝜑𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗))
2726mpteq2dva 4896 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)))
28 1z 11619 . . . . . . 7 1 ∈ ℤ
29 seqfn 13027 . . . . . . 7 (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ‘1))
3028, 29ax-mp 5 . . . . . 6 seq1( + , 𝐹) Fn (ℤ‘1)
31 fneq2 6141 . . . . . . 7 (ℕ = (ℤ‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ‘1)))
328, 31ax-mp 5 . . . . . 6 (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ‘1))
3330, 32mpbir 221 . . . . 5 seq1( + , 𝐹) Fn ℕ
34 dffn5 6404 . . . . 5 (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)))
3533, 34mpbi 220 . . . 4 seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))
36 seqex 13017 . . . . . 6 seq1( + , 𝐹) ∈ V
3736a1i 11 . . . . 5 (𝜑 → seq1( + , 𝐹) ∈ V)
38 esumcvgsum.5 . . . . 5 (𝜑𝐿 ∈ ℝ)
39 esumcvgsum.4 . . . . 5 (𝜑 → seq1( + , 𝐹) ⇝ 𝐿)
40 breldmg 5485 . . . . 5 ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ )
4137, 38, 39, 40syl3anc 1477 . . . 4 (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ )
4235, 41syl5eqelr 2844 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ )
4327, 42eqeltrd 2839 . 2 (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ )
441, 2, 43esumpcvgval 30470 1 (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  wss 3715   class class class wbr 4804  cmpt 4881  dom cdm 5266   Fn wfn 6044  cfv 6049  (class class class)co 6814  cr 10147  0cc0 10148  1c1 10149   + caddc 10151  +∞cpnf 10283  -∞cmnf 10284  *cxr 10285   < clt 10286  cle 10287  cn 11232  cz 11589  cuz 11899  (,)cioo 12388  [,)cico 12390  ...cfz 12539  seqcseq 13015  cli 14434  Σcsu 14635  Σ*cesum 30419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xadd 12160  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-rlim 14439  df-sum 14636  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-ordt 16383  df-xrs 16384  df-mre 16468  df-mrc 16469  df-acs 16471  df-ps 17421  df-tsr 17422  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-cntz 17970  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-ntr 21046  df-nei 21124  df-cn 21253  df-haus 21341  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-tsms 22151  df-esum 30420
This theorem is referenced by:  omssubadd  30692
  Copyright terms: Public domain W3C validator