![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumcvgsum | Structured version Visualization version GIF version |
Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019.) |
Ref | Expression |
---|---|
esumcvgsum.1 | ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) |
esumcvgsum.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) |
esumcvgsum.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) |
esumcvgsum.4 | ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) |
esumcvgsum.5 | ⊢ (𝜑 → 𝐿 ∈ ℝ) |
Ref | Expression |
---|---|
esumcvgsum | ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcvgsum.2 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ (0[,)+∞)) | |
2 | esumcvgsum.1 | . 2 ⊢ (𝑘 = 𝑖 → 𝐴 = 𝐵) | |
3 | simpll 807 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝜑) | |
4 | elfznn 12583 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑗) → 𝑘 ∈ ℕ) | |
5 | 4 | adantl 473 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝑘 ∈ ℕ) |
6 | esumcvgsum.3 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 𝐴) | |
7 | 3, 5, 6 | syl2anc 696 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → (𝐹‘𝑘) = 𝐴) |
8 | nnuz 11936 | . . . . . . . 8 ⊢ ℕ = (ℤ≥‘1) | |
9 | 8 | eleq2i 2831 | . . . . . . 7 ⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ≥‘1)) |
10 | 9 | biimpi 206 | . . . . . 6 ⊢ (𝑗 ∈ ℕ → 𝑗 ∈ (ℤ≥‘1)) |
11 | 10 | adantl 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ≥‘1)) |
12 | mnfxr 10308 | . . . . . . . . 9 ⊢ -∞ ∈ ℝ* | |
13 | pnfxr 10304 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
14 | 0re 10252 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
15 | mnflt 12170 | . . . . . . . . . 10 ⊢ (0 ∈ ℝ → -∞ < 0) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . . 9 ⊢ -∞ < 0 |
17 | pnfge 12177 | . . . . . . . . . 10 ⊢ (+∞ ∈ ℝ* → +∞ ≤ +∞) | |
18 | 13, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ +∞ ≤ +∞ |
19 | icossioo 12477 | . . . . . . . . 9 ⊢ (((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < 0 ∧ +∞ ≤ +∞)) → (0[,)+∞) ⊆ (-∞(,)+∞)) | |
20 | 12, 13, 16, 18, 19 | mp4an 711 | . . . . . . . 8 ⊢ (0[,)+∞) ⊆ (-∞(,)+∞) |
21 | ioomax 12461 | . . . . . . . 8 ⊢ (-∞(,)+∞) = ℝ | |
22 | 20, 21 | sseqtri 3778 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ |
23 | 3, 5, 1 | syl2anc 696 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ (0[,)+∞)) |
24 | 22, 23 | sseldi 3742 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℝ) |
25 | 24 | recnd 10280 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (1...𝑗)) → 𝐴 ∈ ℂ) |
26 | 7, 11, 25 | fsumser 14680 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → Σ𝑘 ∈ (1...𝑗)𝐴 = (seq1( + , 𝐹)‘𝑗)) |
27 | 26 | mpteq2dva 4896 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) |
28 | 1z 11619 | . . . . . . 7 ⊢ 1 ∈ ℤ | |
29 | seqfn 13027 | . . . . . . 7 ⊢ (1 ∈ ℤ → seq1( + , 𝐹) Fn (ℤ≥‘1)) | |
30 | 28, 29 | ax-mp 5 | . . . . . 6 ⊢ seq1( + , 𝐹) Fn (ℤ≥‘1) |
31 | fneq2 6141 | . . . . . . 7 ⊢ (ℕ = (ℤ≥‘1) → (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1))) | |
32 | 8, 31 | ax-mp 5 | . . . . . 6 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) Fn (ℤ≥‘1)) |
33 | 30, 32 | mpbir 221 | . . . . 5 ⊢ seq1( + , 𝐹) Fn ℕ |
34 | dffn5 6404 | . . . . 5 ⊢ (seq1( + , 𝐹) Fn ℕ ↔ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗))) | |
35 | 33, 34 | mpbi 220 | . . . 4 ⊢ seq1( + , 𝐹) = (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) |
36 | seqex 13017 | . . . . . 6 ⊢ seq1( + , 𝐹) ∈ V | |
37 | 36 | a1i 11 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ∈ V) |
38 | esumcvgsum.5 | . . . . 5 ⊢ (𝜑 → 𝐿 ∈ ℝ) | |
39 | esumcvgsum.4 | . . . . 5 ⊢ (𝜑 → seq1( + , 𝐹) ⇝ 𝐿) | |
40 | breldmg 5485 | . . . . 5 ⊢ ((seq1( + , 𝐹) ∈ V ∧ 𝐿 ∈ ℝ ∧ seq1( + , 𝐹) ⇝ 𝐿) → seq1( + , 𝐹) ∈ dom ⇝ ) | |
41 | 37, 38, 39, 40 | syl3anc 1477 | . . . 4 ⊢ (𝜑 → seq1( + , 𝐹) ∈ dom ⇝ ) |
42 | 35, 41 | syl5eqelr 2844 | . . 3 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (seq1( + , 𝐹)‘𝑗)) ∈ dom ⇝ ) |
43 | 27, 42 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝑗 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑗)𝐴) ∈ dom ⇝ ) |
44 | 1, 2, 43 | esumpcvgval 30470 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ ℕ𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 ↦ cmpt 4881 dom cdm 5266 Fn wfn 6044 ‘cfv 6049 (class class class)co 6814 ℝcr 10147 0cc0 10148 1c1 10149 + caddc 10151 +∞cpnf 10283 -∞cmnf 10284 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 ℕcn 11232 ℤcz 11589 ℤ≥cuz 11899 (,)cioo 12388 [,)cico 12390 ...cfz 12539 seqcseq 13015 ⇝ cli 14434 Σcsu 14635 Σ*cesum 30419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xadd 12160 df-ioo 12392 df-ioc 12393 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-fl 12807 df-seq 13016 df-exp 13075 df-hash 13332 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-clim 14438 df-rlim 14439 df-sum 14636 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-ordt 16383 df-xrs 16384 df-mre 16468 df-mrc 16469 df-acs 16471 df-ps 17421 df-tsr 17422 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-grp 17646 df-minusg 17647 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-cring 18770 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-ntr 21046 df-nei 21124 df-cn 21253 df-haus 21341 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-tsms 22151 df-esum 30420 |
This theorem is referenced by: omssubadd 30692 |
Copyright terms: Public domain | W3C validator |